Yongjiu Zhang, Shuxiao Yang, Xianliang Zheng, Xiaoming Tan
{"title":"蓝藻 I 型 CRISPR-Cas 系统:分布、机制和基因组编辑应用。","authors":"Yongjiu Zhang, Shuxiao Yang, Xianliang Zheng, Xiaoming Tan","doi":"10.3389/fbioe.2025.1552030","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria, renowned for their photosynthetic capabilities, serve as efficient microbial chassis capable of converting carbon dioxide into a spectrum of bio-chemicals. However, conventional genetic manipulation strategies have proven incompatible with the precise and systematic modifications required in the field of cyanobacterial synthetic biology. Here, we present an in-depth analysis of endogenous CRISPR-Cas systems within cyanobacterial genomes, with a particular focus on the Type I systems, which are the most widely distributed. We provide a comprehensive summary of the reported DNA defense mechanisms mediated by cyanobacterial Type I CRISPR-Cas systems and their current applications in genome editing. Furthermore, we offer insights into the future applications of these systems in the context of cyanobacterial genome editing, underscoring their potential to revolutionize synthetic biology approaches.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1552030"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cyanobacterial type I CRISPR-Cas systems: distribution, mechanisms, and genome editing applications.\",\"authors\":\"Yongjiu Zhang, Shuxiao Yang, Xianliang Zheng, Xiaoming Tan\",\"doi\":\"10.3389/fbioe.2025.1552030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanobacteria, renowned for their photosynthetic capabilities, serve as efficient microbial chassis capable of converting carbon dioxide into a spectrum of bio-chemicals. However, conventional genetic manipulation strategies have proven incompatible with the precise and systematic modifications required in the field of cyanobacterial synthetic biology. Here, we present an in-depth analysis of endogenous CRISPR-Cas systems within cyanobacterial genomes, with a particular focus on the Type I systems, which are the most widely distributed. We provide a comprehensive summary of the reported DNA defense mechanisms mediated by cyanobacterial Type I CRISPR-Cas systems and their current applications in genome editing. Furthermore, we offer insights into the future applications of these systems in the context of cyanobacterial genome editing, underscoring their potential to revolutionize synthetic biology approaches.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"13 \",\"pages\":\"1552030\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2025.1552030\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1552030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cyanobacterial type I CRISPR-Cas systems: distribution, mechanisms, and genome editing applications.
Cyanobacteria, renowned for their photosynthetic capabilities, serve as efficient microbial chassis capable of converting carbon dioxide into a spectrum of bio-chemicals. However, conventional genetic manipulation strategies have proven incompatible with the precise and systematic modifications required in the field of cyanobacterial synthetic biology. Here, we present an in-depth analysis of endogenous CRISPR-Cas systems within cyanobacterial genomes, with a particular focus on the Type I systems, which are the most widely distributed. We provide a comprehensive summary of the reported DNA defense mechanisms mediated by cyanobacterial Type I CRISPR-Cas systems and their current applications in genome editing. Furthermore, we offer insights into the future applications of these systems in the context of cyanobacterial genome editing, underscoring their potential to revolutionize synthetic biology approaches.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.