Hongxing Liu, Yanru Bai, Qi Zheng, Ran Zhao, Mingkun Guo, Jianing Zhu, Guangjian Ni
{"title":"Effects of spatial separation and background noise on brain functional connectivity during auditory selective spatial attention.","authors":"Hongxing Liu, Yanru Bai, Qi Zheng, Ran Zhao, Mingkun Guo, Jianing Zhu, Guangjian Ni","doi":"10.1093/cercor/bhaf054","DOIUrl":null,"url":null,"abstract":"<p><p>Auditory selective spatial attention (ASSA) plays an important role in \"cocktail party\" scenes, but the effects of spatial separation between target and distractor sources and background noise on the associated brain responses have not been thoroughly investigated. This study utilized the multilayer time-varying brain network to reveal the effect patterns of different separation degrees and signal-to-noise ratio (SNR) levels on brain functional connectivity during ASSA. Specifically, a multilayer time-varying brain network with six time-windows equally divided by each epoch was constructed to investigate the segregation and integration of brain functional connectivity. The results showed that the inter-layer connectivity strength was consistently lower than the intra-layer connectivity strength for various separation degrees and SNR levels. Moreover, the connectivity strength of the multilayer time-varying brain network increased with decreasing separation degrees and initially increased and subsequently decreased with decreasing SNR levels. The second time-window of the network showed the most significant variation under some conditions and was determined as the core layer. The topology within the core layer was mainly reflected in the connectivity between the frontal and parietal-occipital cortices. In conclusion, these results suggest that spatial separation and background noise significantly modulate brain functional connectivity during ASSA.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf054","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Effects of spatial separation and background noise on brain functional connectivity during auditory selective spatial attention.
Auditory selective spatial attention (ASSA) plays an important role in "cocktail party" scenes, but the effects of spatial separation between target and distractor sources and background noise on the associated brain responses have not been thoroughly investigated. This study utilized the multilayer time-varying brain network to reveal the effect patterns of different separation degrees and signal-to-noise ratio (SNR) levels on brain functional connectivity during ASSA. Specifically, a multilayer time-varying brain network with six time-windows equally divided by each epoch was constructed to investigate the segregation and integration of brain functional connectivity. The results showed that the inter-layer connectivity strength was consistently lower than the intra-layer connectivity strength for various separation degrees and SNR levels. Moreover, the connectivity strength of the multilayer time-varying brain network increased with decreasing separation degrees and initially increased and subsequently decreased with decreasing SNR levels. The second time-window of the network showed the most significant variation under some conditions and was determined as the core layer. The topology within the core layer was mainly reflected in the connectivity between the frontal and parietal-occipital cortices. In conclusion, these results suggest that spatial separation and background noise significantly modulate brain functional connectivity during ASSA.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.