NtDHS通过调控烟草基因翻译调控叶片衰老。

IF 2.7 4区 生物学 Q2 PLANT SCIENCES
Junping Gao, Ying Wang, Xinxi He, Long Chen, Shuaibin Wang, Xinyao Zhang, Sirui Zhu, Xiaoxu Li, Xiaonian Yang, Wenxuan Pu, Yuanyuan Li
{"title":"NtDHS通过调控烟草基因翻译调控叶片衰老。","authors":"Junping Gao, Ying Wang, Xinxi He, Long Chen, Shuaibin Wang, Xinyao Zhang, Sirui Zhu, Xiaoxu Li, Xiaonian Yang, Wenxuan Pu, Yuanyuan Li","doi":"10.1071/FP24294","DOIUrl":null,"url":null,"abstract":"<p><p>The biochemical and transcriptional regulatory mechanisms of chlorophyll metabolism have been extensively studied, but the translational regulatory mechanisms remain poorly understood. In this study, we found that Nt DHS1 deficiency in N. tabacum resulted in smaller leaves and increased leaf chlorophyll content. Protein content determination experiments revealed that the global protein synthesis of the Ntdhs1 mutant was decreased. A ribosome profiling sequence (Ribo-seq) assay showed that the translation level of genes related to cell growth was significantly reduced, while the translation level of chlorophyll metabolism related genes was significantly increased in Ntdhs1 mutant. Biochemical analysis further demonstrated that Nt DHS interacts with the translation initiation factor Nt eIF5A. Moreover, the Nteif5a1 mutant exhibited phenotypes similar to the Ntdhs1 mutant, including a reduced translation level of cell growth related genes and increased translation level of chlorophyll metabolism related genes. Our studies suggest that the Nt DHS-Nt eIF5A complex regulates leaf senescence by modulating the translation of specific genes.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"52 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Nt</i>DHS regulates leaf senescence by modulating gene translation in <i>Nicotiana tabacum</i>.\",\"authors\":\"Junping Gao, Ying Wang, Xinxi He, Long Chen, Shuaibin Wang, Xinyao Zhang, Sirui Zhu, Xiaoxu Li, Xiaonian Yang, Wenxuan Pu, Yuanyuan Li\",\"doi\":\"10.1071/FP24294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biochemical and transcriptional regulatory mechanisms of chlorophyll metabolism have been extensively studied, but the translational regulatory mechanisms remain poorly understood. In this study, we found that Nt DHS1 deficiency in N. tabacum resulted in smaller leaves and increased leaf chlorophyll content. Protein content determination experiments revealed that the global protein synthesis of the Ntdhs1 mutant was decreased. A ribosome profiling sequence (Ribo-seq) assay showed that the translation level of genes related to cell growth was significantly reduced, while the translation level of chlorophyll metabolism related genes was significantly increased in Ntdhs1 mutant. Biochemical analysis further demonstrated that Nt DHS interacts with the translation initiation factor Nt eIF5A. Moreover, the Nteif5a1 mutant exhibited phenotypes similar to the Ntdhs1 mutant, including a reduced translation level of cell growth related genes and increased translation level of chlorophyll metabolism related genes. Our studies suggest that the Nt DHS-Nt eIF5A complex regulates leaf senescence by modulating the translation of specific genes.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"52 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24294\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24294","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

叶绿素代谢的生化和转录调控机制已被广泛研究,但其翻译调控机制尚不清楚。在本研究中,我们发现Nt DHS1缺乏导致烟草叶片变小,叶片叶绿素含量升高。蛋白质含量测定实验显示,Ntdhs1突变体的整体蛋白质合成减少。核糖体分析序列(Ribo-seq)分析显示,Ntdhs1突变体中与细胞生长相关的基因翻译水平显著降低,而叶绿素代谢相关基因的翻译水平显著升高。生化分析进一步证实Nt DHS与翻译起始因子Nt eIF5A相互作用。此外,Nteif5a1突变体表现出与Ntdhs1突变体相似的表型,包括细胞生长相关基因的翻译水平降低,叶绿素代谢相关基因的翻译水平增加。我们的研究表明Nt DHS-Nt eIF5A复合体通过调节特定基因的翻译来调节叶片衰老。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NtDHS regulates leaf senescence by modulating gene translation in Nicotiana tabacum.

The biochemical and transcriptional regulatory mechanisms of chlorophyll metabolism have been extensively studied, but the translational regulatory mechanisms remain poorly understood. In this study, we found that Nt DHS1 deficiency in N. tabacum resulted in smaller leaves and increased leaf chlorophyll content. Protein content determination experiments revealed that the global protein synthesis of the Ntdhs1 mutant was decreased. A ribosome profiling sequence (Ribo-seq) assay showed that the translation level of genes related to cell growth was significantly reduced, while the translation level of chlorophyll metabolism related genes was significantly increased in Ntdhs1 mutant. Biochemical analysis further demonstrated that Nt DHS interacts with the translation initiation factor Nt eIF5A. Moreover, the Nteif5a1 mutant exhibited phenotypes similar to the Ntdhs1 mutant, including a reduced translation level of cell growth related genes and increased translation level of chlorophyll metabolism related genes. Our studies suggest that the Nt DHS-Nt eIF5A complex regulates leaf senescence by modulating the translation of specific genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信