利用机器学习对类风湿关节炎进行药物再利用。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Qin-Yi Su , Yi-Xin Cao , He-Yi Zhang , Yong-Zhi Li , Sheng-Xiao Zhang
{"title":"利用机器学习对类风湿关节炎进行药物再利用。","authors":"Qin-Yi Su ,&nbsp;Yi-Xin Cao ,&nbsp;He-Yi Zhang ,&nbsp;Yong-Zhi Li ,&nbsp;Sheng-Xiao Zhang","doi":"10.1016/j.drudis.2025.104327","DOIUrl":null,"url":null,"abstract":"<div><div>Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 4","pages":"Article 104327"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging machine learning for drug repurposing in rheumatoid arthritis\",\"authors\":\"Qin-Yi Su ,&nbsp;Yi-Xin Cao ,&nbsp;He-Yi Zhang ,&nbsp;Yong-Zhi Li ,&nbsp;Sheng-Xiao Zhang\",\"doi\":\"10.1016/j.drudis.2025.104327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.</div></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"30 4\",\"pages\":\"Article 104327\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644625000406\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625000406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

尽管对类风湿关节炎(RA)机制的了解有所进展,但由于缺乏有效的药物,类风湿关节炎(RA)在临床管理中提出了重大挑战。药物再利用已成为解决这一差距的一种有希望的战略,可提供潜在的成本节约并加速药物发现。值得注意的是,计算方法,特别是机器学习(ML),在类风湿性关节炎药物再利用中显示出了希望。在这篇综述中,我们调查了各种药物再利用方法,包括经典的和现代的,突出了ML的关键作用。我们总结了通过计算策略确定的RA候选药物,并讨论了该领域的主要挑战。利用ML,同时加深对RA机制的理解,有望增强RA患者的药物治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging machine learning for drug repurposing in rheumatoid arthritis
Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信