Qin-Yi Su , Yi-Xin Cao , He-Yi Zhang , Yong-Zhi Li , Sheng-Xiao Zhang
{"title":"利用机器学习对类风湿关节炎进行药物再利用。","authors":"Qin-Yi Su , Yi-Xin Cao , He-Yi Zhang , Yong-Zhi Li , Sheng-Xiao Zhang","doi":"10.1016/j.drudis.2025.104327","DOIUrl":null,"url":null,"abstract":"<div><div>Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 4","pages":"Article 104327"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging machine learning for drug repurposing in rheumatoid arthritis\",\"authors\":\"Qin-Yi Su , Yi-Xin Cao , He-Yi Zhang , Yong-Zhi Li , Sheng-Xiao Zhang\",\"doi\":\"10.1016/j.drudis.2025.104327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.</div></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"30 4\",\"pages\":\"Article 104327\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644625000406\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625000406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Leveraging machine learning for drug repurposing in rheumatoid arthritis
Rheumatoid arthritis (RA) presents a significant challenge in clinical management because of the dearth of effective drugs despite advances in understanding its mechanisms. Drug repurposing has emerged as a promising strategy to address this gap, offering potential cost savings and expediting drug discovery. Notably, computational methods, particularly machine learning (ML), have shown promise in RA drug repurposing. In this review, we survey various drug-repurposing approaches, both classical and contemporary, highlighting the pivotal role of ML. We summarize RA candidate drugs identified through computational strategies and discuss prevailing challenges in this domain. Leveraging ML, alongside a deepening understanding of RA mechanisms, holds promise for enhancing pharmacological treatment options for patients with RA.
期刊介绍:
Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed.
Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.