{"title":"不同长度低聚n -乙酰乳胺基序核聚焦不对称n -聚糖的化学酶合成及其唾液化延伸。","authors":"Kaixuan Wang, Wenjing Ma, Xiao Meng, Zhuojia Xu, Wei Zhao, Tiehai Li","doi":"10.1002/chem.202500183","DOIUrl":null,"url":null,"abstract":"<p>An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical <i>N</i>-glycans bearing different lengths of oligo-<i>N</i>-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated <i>N</i>-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary <i>N</i>-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":"31 24","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions\",\"authors\":\"Kaixuan Wang, Wenjing Ma, Xiao Meng, Zhuojia Xu, Wei Zhao, Tiehai Li\",\"doi\":\"10.1002/chem.202500183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical <i>N</i>-glycans bearing different lengths of oligo-<i>N</i>-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated <i>N</i>-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary <i>N</i>-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\"31 24\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500183\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202500183","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions
An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical N-glycans bearing different lengths of oligo-N-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated N-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary N-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.