{"title":"旋涡对舞蹈和振荡的观测","authors":"Dadong Liu, Lai Chen, Li-Gang Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Vortex dynamics, which encompass the motion, evolution, and propagation of vortices, elicit both fascination and challenges across various domains such as fluid dynamics, atmospheric science, and physics. This study focuses on the fundamental dynamics of vortex-pair fields, specifically known as vortex-pair beams (VPBs) in optics. VPBs have gained increasing attention due to their unique properties, including vortex attraction and repulsion. Here, we explore the dynamics of pure-phase VPBs (PPVPBs) and observe intriguing helical and intertwined behaviors of vortices, resembling a vortex-pair dance. We uncover the oscillation property of the intervortex distance for PPVPBs in free space. The observed dancing and oscillation phenomena are intricately tied to the initial intervortex distance and can be explained well in the hydrodynamic picture. Notably, the vortex dancing and oscillation alter the process of vortex-pair annihilation, extending the survival range for opposite vortices. This discovery enhances our understanding of vortex interactions and sheds light on the intricate dynamics of both vortex-vortex and vortex-antivortex interactions.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 11","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adn9279","citationCount":"0","resultStr":"{\"title\":\"Observation of vortex-pair dance and oscillation\",\"authors\":\"Dadong Liu, Lai Chen, Li-Gang Wang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Vortex dynamics, which encompass the motion, evolution, and propagation of vortices, elicit both fascination and challenges across various domains such as fluid dynamics, atmospheric science, and physics. This study focuses on the fundamental dynamics of vortex-pair fields, specifically known as vortex-pair beams (VPBs) in optics. VPBs have gained increasing attention due to their unique properties, including vortex attraction and repulsion. Here, we explore the dynamics of pure-phase VPBs (PPVPBs) and observe intriguing helical and intertwined behaviors of vortices, resembling a vortex-pair dance. We uncover the oscillation property of the intervortex distance for PPVPBs in free space. The observed dancing and oscillation phenomena are intricately tied to the initial intervortex distance and can be explained well in the hydrodynamic picture. Notably, the vortex dancing and oscillation alter the process of vortex-pair annihilation, extending the survival range for opposite vortices. This discovery enhances our understanding of vortex interactions and sheds light on the intricate dynamics of both vortex-vortex and vortex-antivortex interactions.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 11\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adn9279\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adn9279\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adn9279","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Vortex dynamics, which encompass the motion, evolution, and propagation of vortices, elicit both fascination and challenges across various domains such as fluid dynamics, atmospheric science, and physics. This study focuses on the fundamental dynamics of vortex-pair fields, specifically known as vortex-pair beams (VPBs) in optics. VPBs have gained increasing attention due to their unique properties, including vortex attraction and repulsion. Here, we explore the dynamics of pure-phase VPBs (PPVPBs) and observe intriguing helical and intertwined behaviors of vortices, resembling a vortex-pair dance. We uncover the oscillation property of the intervortex distance for PPVPBs in free space. The observed dancing and oscillation phenomena are intricately tied to the initial intervortex distance and can be explained well in the hydrodynamic picture. Notably, the vortex dancing and oscillation alter the process of vortex-pair annihilation, extending the survival range for opposite vortices. This discovery enhances our understanding of vortex interactions and sheds light on the intricate dynamics of both vortex-vortex and vortex-antivortex interactions.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.