Katja Mauelshagen, Philipp Schienbein, Inga Kolling, Gerhard Schwaab, Dominik Marx, Martina Havenith
{"title":"在超临界条件下,水与水的相互作用主要是随机相遇","authors":"Katja Mauelshagen, Philipp Schienbein, Inga Kolling, Gerhard Schwaab, Dominik Marx, Martina Havenith","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Supercritical water is widely present in Earth’s crust and has a great potential as an environmentally friendly solvent. Water also serves as the prototype for directional hydrogen bonding at ambient conditions. However, the question of whether supercritical water is still hydrogen-bonded or how water molecules interact en route to the supercritical regime is a matter of controversial discussions. We present terahertz (THz) spectra, which directly probe the intermolecular interactions of water under these extreme conditions. While we spectroscopically detect the liquid-gas phase transition just below the critical point, THz spectra of the high-temperature gas phase are indistinguishable from those of supercritical water at the same density. The accompanying ab initio simulations provide the molecular underpinnings: The water-water contacts at supercritical conditions are essentially orientationally random.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 11","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp8614","citationCount":"0","resultStr":"{\"title\":\"Random encounters dominate water-water interactions at supercritical conditions\",\"authors\":\"Katja Mauelshagen, Philipp Schienbein, Inga Kolling, Gerhard Schwaab, Dominik Marx, Martina Havenith\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Supercritical water is widely present in Earth’s crust and has a great potential as an environmentally friendly solvent. Water also serves as the prototype for directional hydrogen bonding at ambient conditions. However, the question of whether supercritical water is still hydrogen-bonded or how water molecules interact en route to the supercritical regime is a matter of controversial discussions. We present terahertz (THz) spectra, which directly probe the intermolecular interactions of water under these extreme conditions. While we spectroscopically detect the liquid-gas phase transition just below the critical point, THz spectra of the high-temperature gas phase are indistinguishable from those of supercritical water at the same density. The accompanying ab initio simulations provide the molecular underpinnings: The water-water contacts at supercritical conditions are essentially orientationally random.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 11\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adp8614\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adp8614\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp8614","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Random encounters dominate water-water interactions at supercritical conditions
Supercritical water is widely present in Earth’s crust and has a great potential as an environmentally friendly solvent. Water also serves as the prototype for directional hydrogen bonding at ambient conditions. However, the question of whether supercritical water is still hydrogen-bonded or how water molecules interact en route to the supercritical regime is a matter of controversial discussions. We present terahertz (THz) spectra, which directly probe the intermolecular interactions of water under these extreme conditions. While we spectroscopically detect the liquid-gas phase transition just below the critical point, THz spectra of the high-temperature gas phase are indistinguishable from those of supercritical water at the same density. The accompanying ab initio simulations provide the molecular underpinnings: The water-water contacts at supercritical conditions are essentially orientationally random.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.