{"title":"磁光力学高阶异常点周围的力学动力学","authors":"Wen-Di He, Xiao-Hong Fan, Ming-Yue Liu, Guo-Qiang Zhang, Hai-Chao Li, Wei Xiong","doi":"10.1002/qute.202400275","DOIUrl":null,"url":null,"abstract":"<p>Diverse exceptional points (EPs) are theoretically studied in an experimentally feasible magno-optomechanics consisting of an optomechanical subsystem coupled to a magnomechanical subsystem via physically direct contact. By adiabatically eliminating both the cavity and the Kittel mode, dissipative and parity-time symmetric exceptional points can be observed. When only the cavity mode is eliminated, a second (third)-order pseudo-Hermitian EP emerges for nondegenerate (degenerate) mechanical modes. The distinct dynamical behavior of two mechanical modes around these EPs are further studied. The proposal provides a promising way to engineer diverse EPs and quantify non-Hermitian phase transition with exceptional dynamical behavior in magno-optomechanics.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Dynamics Around Higher-Order Exceptional Point in Magno-Optomechanics\",\"authors\":\"Wen-Di He, Xiao-Hong Fan, Ming-Yue Liu, Guo-Qiang Zhang, Hai-Chao Li, Wei Xiong\",\"doi\":\"10.1002/qute.202400275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diverse exceptional points (EPs) are theoretically studied in an experimentally feasible magno-optomechanics consisting of an optomechanical subsystem coupled to a magnomechanical subsystem via physically direct contact. By adiabatically eliminating both the cavity and the Kittel mode, dissipative and parity-time symmetric exceptional points can be observed. When only the cavity mode is eliminated, a second (third)-order pseudo-Hermitian EP emerges for nondegenerate (degenerate) mechanical modes. The distinct dynamical behavior of two mechanical modes around these EPs are further studied. The proposal provides a promising way to engineer diverse EPs and quantify non-Hermitian phase transition with exceptional dynamical behavior in magno-optomechanics.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Mechanical Dynamics Around Higher-Order Exceptional Point in Magno-Optomechanics
Diverse exceptional points (EPs) are theoretically studied in an experimentally feasible magno-optomechanics consisting of an optomechanical subsystem coupled to a magnomechanical subsystem via physically direct contact. By adiabatically eliminating both the cavity and the Kittel mode, dissipative and parity-time symmetric exceptional points can be observed. When only the cavity mode is eliminated, a second (third)-order pseudo-Hermitian EP emerges for nondegenerate (degenerate) mechanical modes. The distinct dynamical behavior of two mechanical modes around these EPs are further studied. The proposal provides a promising way to engineer diverse EPs and quantify non-Hermitian phase transition with exceptional dynamical behavior in magno-optomechanics.