高温下不同饱和度混凝土传热特性的实验与分析研究

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Deng, Jiajie Cui, Ridho Surahman, Min Tu, Yi Wang
{"title":"高温下不同饱和度混凝土传热特性的实验与分析研究","authors":"Jun Deng,&nbsp;Jiajie Cui,&nbsp;Ridho Surahman,&nbsp;Min Tu,&nbsp;Yi Wang","doi":"10.1002/fam.3270","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In hygrothermal conditions, structural safety is a major concern because of the occurrence of explosive spalling when concrete structures are exposed to fire. To evaluate the fire damage of concrete accurately, the effect of moisture content and water-to-cement ratio on the thermal conductivity of concrete under elevated temperatures was studied experimentally and analytically in this paper. The experimental results showed that the temperature fields had a significant change among the cases with different water-to-cement ratios while the changes between dried and saturated cases were marginal. The temperature changes of dried samples were slightly swifter than those of saturated one. It indicates that compared with mixture proportions, concrete saturation degree has an insignificant influence on concrete heat transfer in the procedure of fire exposure. Based on the test and analytical results, an analytical model for heat transfer analysis of fire-damaged concrete under hot and humid environments was proposed and showed good agreement with the test results.</p>\n </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"269-279"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Analytical Study on Heat Transfer of Concrete With Different Degrees of Saturation Under Elevated Temperatures\",\"authors\":\"Jun Deng,&nbsp;Jiajie Cui,&nbsp;Ridho Surahman,&nbsp;Min Tu,&nbsp;Yi Wang\",\"doi\":\"10.1002/fam.3270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In hygrothermal conditions, structural safety is a major concern because of the occurrence of explosive spalling when concrete structures are exposed to fire. To evaluate the fire damage of concrete accurately, the effect of moisture content and water-to-cement ratio on the thermal conductivity of concrete under elevated temperatures was studied experimentally and analytically in this paper. The experimental results showed that the temperature fields had a significant change among the cases with different water-to-cement ratios while the changes between dried and saturated cases were marginal. The temperature changes of dried samples were slightly swifter than those of saturated one. It indicates that compared with mixture proportions, concrete saturation degree has an insignificant influence on concrete heat transfer in the procedure of fire exposure. Based on the test and analytical results, an analytical model for heat transfer analysis of fire-damaged concrete under hot and humid environments was proposed and showed good agreement with the test results.</p>\\n </div>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 3\",\"pages\":\"269-279\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3270\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3270","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在湿热条件下,由于混凝土结构暴露在火灾中会发生爆炸性剥落,因此结构安全是一个主要问题。为了准确评价混凝土的火灾损伤,本文通过实验和分析研究了高温下含水率和水灰比对混凝土导热系数的影响。实验结果表明,不同水灰比情况下的温度场变化显著,而干燥和饱和情况下的温度场变化不大。干燥样品的温度变化略快于饱和样品。结果表明,与混凝土配合比相比,混凝土饱和度对混凝土在火灾暴露过程中的传热影响不显著。在试验和分析结果的基础上,建立了湿热环境下火灾损伤混凝土的传热分析模型,与试验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Analytical Study on Heat Transfer of Concrete With Different Degrees of Saturation Under Elevated Temperatures

In hygrothermal conditions, structural safety is a major concern because of the occurrence of explosive spalling when concrete structures are exposed to fire. To evaluate the fire damage of concrete accurately, the effect of moisture content and water-to-cement ratio on the thermal conductivity of concrete under elevated temperatures was studied experimentally and analytically in this paper. The experimental results showed that the temperature fields had a significant change among the cases with different water-to-cement ratios while the changes between dried and saturated cases were marginal. The temperature changes of dried samples were slightly swifter than those of saturated one. It indicates that compared with mixture proportions, concrete saturation degree has an insignificant influence on concrete heat transfer in the procedure of fire exposure. Based on the test and analytical results, an analytical model for heat transfer analysis of fire-damaged concrete under hot and humid environments was proposed and showed good agreement with the test results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信