全球河流模型基准框架

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Xudong Zhou, Dai Yamazaki, Menaka Revel, Gang Zhao, Prakat Modi
{"title":"全球河流模型基准框架","authors":"Xudong Zhou,&nbsp;Dai Yamazaki,&nbsp;Menaka Revel,&nbsp;Gang Zhao,&nbsp;Prakat Modi","doi":"10.1029/2024MS004379","DOIUrl":null,"url":null,"abstract":"<p>Global River Models (GRMs), which simulate river flow and flood processes, have rapidly developed in recent decades. However, these advancements necessitate meaningful and standardized quality assessments and comparisons against a suitable set of observational variables using appropriate metrics, a requirement currently lacking within GRM communities. This study proposes implementing a benchmark system designed to facilitate the assessment of river models and enable comparisons against established benchmarks. The benchmark system incorporates satellite remote sensing data complementing in situ data, including water surface elevation and inundation extent information, with necessary preprocessing. Consequently, this evaluation system encompasses a larger geographical area than traditional methods relying solely on in-situ river discharge measurements for GRMs. A set of evaluation and comparison metrics has been developed, including a quantile-based comparison metric that allows for a comprehensive analysis of multiple simulation outputs. The test application of this benchmark system to a global river model (CaMa-Flood), utilizing diverse runoff inputs, illustrates that incorporating bias-corrected runoff data leads to improved model performance across various observational variables and performance metrics. The current iteration of the benchmark system is suitable for global-scale assessments and can effectively evaluate the impact of model development and facilitate intercomparisons among different models. The source codes are accessible from https://doi.org/10.5281/zenodo.10903210.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004379","citationCount":"0","resultStr":"{\"title\":\"Benchmark Framework for Global River Models\",\"authors\":\"Xudong Zhou,&nbsp;Dai Yamazaki,&nbsp;Menaka Revel,&nbsp;Gang Zhao,&nbsp;Prakat Modi\",\"doi\":\"10.1029/2024MS004379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global River Models (GRMs), which simulate river flow and flood processes, have rapidly developed in recent decades. However, these advancements necessitate meaningful and standardized quality assessments and comparisons against a suitable set of observational variables using appropriate metrics, a requirement currently lacking within GRM communities. This study proposes implementing a benchmark system designed to facilitate the assessment of river models and enable comparisons against established benchmarks. The benchmark system incorporates satellite remote sensing data complementing in situ data, including water surface elevation and inundation extent information, with necessary preprocessing. Consequently, this evaluation system encompasses a larger geographical area than traditional methods relying solely on in-situ river discharge measurements for GRMs. A set of evaluation and comparison metrics has been developed, including a quantile-based comparison metric that allows for a comprehensive analysis of multiple simulation outputs. The test application of this benchmark system to a global river model (CaMa-Flood), utilizing diverse runoff inputs, illustrates that incorporating bias-corrected runoff data leads to improved model performance across various observational variables and performance metrics. The current iteration of the benchmark system is suitable for global-scale assessments and can effectively evaluate the impact of model development and facilitate intercomparisons among different models. The source codes are accessible from https://doi.org/10.5281/zenodo.10903210.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004379\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004379\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004379","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

全球河流模型(GRMs)是一种模拟河流流量和洪水过程的模型,近几十年来得到了迅速发展。然而,这些进步需要有意义和标准化的质量评估,并使用适当的指标与一组适当的观察变量进行比较,这是目前GRM社区缺乏的要求。本研究建议实施一个基准系统,旨在促进河流模型的评估,并与已建立的基准进行比较。基准系统采用卫星遥感数据补充现场数据,包括水面高程和淹没程度信息,并进行必要的预处理。因此,该评价体系涵盖的地理区域比传统方法更大,传统方法仅依赖于grm的原位河流流量测量。已经开发了一套评估和比较指标,包括基于分位数的比较指标,允许对多个模拟输出进行全面分析。该基准系统在全球河流模型(CaMa-Flood)中的测试应用,利用不同的径流输入,表明纳入偏差校正的径流数据可以提高模型在各种观测变量和性能指标上的性能。当前迭代的基准体系适用于全球尺度的评估,可以有效地评估模型开发的影响,便于不同模型之间的相互比较。源代码可从https://doi.org/10.5281/zenodo.10903210访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmark Framework for Global River Models

Benchmark Framework for Global River Models

Global River Models (GRMs), which simulate river flow and flood processes, have rapidly developed in recent decades. However, these advancements necessitate meaningful and standardized quality assessments and comparisons against a suitable set of observational variables using appropriate metrics, a requirement currently lacking within GRM communities. This study proposes implementing a benchmark system designed to facilitate the assessment of river models and enable comparisons against established benchmarks. The benchmark system incorporates satellite remote sensing data complementing in situ data, including water surface elevation and inundation extent information, with necessary preprocessing. Consequently, this evaluation system encompasses a larger geographical area than traditional methods relying solely on in-situ river discharge measurements for GRMs. A set of evaluation and comparison metrics has been developed, including a quantile-based comparison metric that allows for a comprehensive analysis of multiple simulation outputs. The test application of this benchmark system to a global river model (CaMa-Flood), utilizing diverse runoff inputs, illustrates that incorporating bias-corrected runoff data leads to improved model performance across various observational variables and performance metrics. The current iteration of the benchmark system is suitable for global-scale assessments and can effectively evaluate the impact of model development and facilitate intercomparisons among different models. The source codes are accessible from https://doi.org/10.5281/zenodo.10903210.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信