极地海洋热浪和冰山融化加剧了浮游植物的大量繁殖

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Hao Liu, Xiangang Hu, Anning Wang, Jiawei Li, Peng Deng, Xu Dong
{"title":"极地海洋热浪和冰山融化加剧了浮游植物的大量繁殖","authors":"Hao Liu,&nbsp;Xiangang Hu,&nbsp;Anning Wang,&nbsp;Jiawei Li,&nbsp;Peng Deng,&nbsp;Xu Dong","doi":"10.1111/gcb.70132","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Climate change has led to increases in the intensity and frequency of marine heatwaves (MHWs). However, the impact of MHWs on phytoplankton at the global scale remains unclear. The metaheuristic superlearner proposed in this research indicates that the occurrence of MHWs weakens the Fe limitation of phytoplankton growth, leading to intensified phytoplankton blooms. The shock transmission effect analysis further reveals the interactions among sea surface temperature (SST), iceberg melting, Fe, ammonium (<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>NH</mi>\n <mn>4</mn>\n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{NH}}_4^{+} $$</annotation>\n </semantics></math>) and nitrate (<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>NO</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_3^{-} $$</annotation>\n </semantics></math>); namely, the occurrence of MHWs in polar regions has led to iceberg melting, triggering a derivative shock of iceberg melting. Compared with a single MHWs event, the dual shock disrupted the effects of Fe, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>NH</mi>\n <mn>4</mn>\n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{NH}}_4^{+} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>NO</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {\\mathrm{NO}}_3^{-} $$</annotation>\n </semantics></math> on limiting the growth of phytoplankton, resulting in a 54.90% increase in the growth rate of phytoplankton and leading to the massive reproduction of phytoplankton in polar regions. In addition, compared with that in the low-emission scenario (SSP126), the coverage area of globally fragile marine regions with respect to intensified phytoplankton blooms will increase by 5.84% under the medium-emission scenario (SSP245) and by 9.29% under the high-emission scenario (SSP585). Specifically, the Global South and developing Pacific island countries are fragile regions that need scientific (marine protected area guidance) and financial (such as a foundation for marine protection) assistance to resist the increasing intensity and expansion of phytoplankton blooms under climate change.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 3","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marine Heatwaves and Iceberg Melting in Polar Areas Intensify Phytoplankton Blooms\",\"authors\":\"Hao Liu,&nbsp;Xiangang Hu,&nbsp;Anning Wang,&nbsp;Jiawei Li,&nbsp;Peng Deng,&nbsp;Xu Dong\",\"doi\":\"10.1111/gcb.70132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Climate change has led to increases in the intensity and frequency of marine heatwaves (MHWs). However, the impact of MHWs on phytoplankton at the global scale remains unclear. The metaheuristic superlearner proposed in this research indicates that the occurrence of MHWs weakens the Fe limitation of phytoplankton growth, leading to intensified phytoplankton blooms. The shock transmission effect analysis further reveals the interactions among sea surface temperature (SST), iceberg melting, Fe, ammonium (<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>NH</mi>\\n <mn>4</mn>\\n <mo>+</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NH}}_4^{+} $$</annotation>\\n </semantics></math>) and nitrate (<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>NO</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_3^{-} $$</annotation>\\n </semantics></math>); namely, the occurrence of MHWs in polar regions has led to iceberg melting, triggering a derivative shock of iceberg melting. Compared with a single MHWs event, the dual shock disrupted the effects of Fe, <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>NH</mi>\\n <mn>4</mn>\\n <mo>+</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NH}}_4^{+} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>NO</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{NO}}_3^{-} $$</annotation>\\n </semantics></math> on limiting the growth of phytoplankton, resulting in a 54.90% increase in the growth rate of phytoplankton and leading to the massive reproduction of phytoplankton in polar regions. In addition, compared with that in the low-emission scenario (SSP126), the coverage area of globally fragile marine regions with respect to intensified phytoplankton blooms will increase by 5.84% under the medium-emission scenario (SSP245) and by 9.29% under the high-emission scenario (SSP585). Specifically, the Global South and developing Pacific island countries are fragile regions that need scientific (marine protected area guidance) and financial (such as a foundation for marine protection) assistance to resist the increasing intensity and expansion of phytoplankton blooms under climate change.</p>\\n </div>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 3\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70132\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70132","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

气候变化导致海洋热浪的强度和频率增加。然而,在全球范围内,mhw对浮游植物的影响尚不清楚。本研究提出的元启发式超级学习器表明,mhw的发生削弱了浮游植物生长的铁限制,导致浮游植物华度加剧。冲击传递效应分析进一步揭示了海表温度(SST)、冰山融化、Fe、铵(nh4 + $$ {\mathrm{NH}}_4^{+} $$)和硝(no3−$$ {\mathrm{NO}}_3^{-} $$);即在极地地区发生的强震导致了冰山融化,引发了冰山融化的衍生冲击。与单一MHWs事件相比,双重冲击破坏了铁的作用,nh4 + $$ {\mathrm{NH}}_4^{+} $$和no3−$$ {\mathrm{NO}}_3^{-} $$对浮游植物生长的限制作用,产生54.90% increase in the growth rate of phytoplankton and leading to the massive reproduction of phytoplankton in polar regions. In addition, compared with that in the low-emission scenario (SSP126), the coverage area of globally fragile marine regions with respect to intensified phytoplankton blooms will increase by 5.84% under the medium-emission scenario (SSP245) and by 9.29% under the high-emission scenario (SSP585). Specifically, the Global South and developing Pacific island countries are fragile regions that need scientific (marine protected area guidance) and financial (such as a foundation for marine protection) assistance to resist the increasing intensity and expansion of phytoplankton blooms under climate change.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Marine Heatwaves and Iceberg Melting in Polar Areas Intensify Phytoplankton Blooms

Marine Heatwaves and Iceberg Melting in Polar Areas Intensify Phytoplankton Blooms

Climate change has led to increases in the intensity and frequency of marine heatwaves (MHWs). However, the impact of MHWs on phytoplankton at the global scale remains unclear. The metaheuristic superlearner proposed in this research indicates that the occurrence of MHWs weakens the Fe limitation of phytoplankton growth, leading to intensified phytoplankton blooms. The shock transmission effect analysis further reveals the interactions among sea surface temperature (SST), iceberg melting, Fe, ammonium ( NH 4 + $$ {\mathrm{NH}}_4^{+} $$ ) and nitrate ( NO 3 $$ {\mathrm{NO}}_3^{-} $$ ); namely, the occurrence of MHWs in polar regions has led to iceberg melting, triggering a derivative shock of iceberg melting. Compared with a single MHWs event, the dual shock disrupted the effects of Fe, NH 4 + $$ {\mathrm{NH}}_4^{+} $$ and NO 3 $$ {\mathrm{NO}}_3^{-} $$ on limiting the growth of phytoplankton, resulting in a 54.90% increase in the growth rate of phytoplankton and leading to the massive reproduction of phytoplankton in polar regions. In addition, compared with that in the low-emission scenario (SSP126), the coverage area of globally fragile marine regions with respect to intensified phytoplankton blooms will increase by 5.84% under the medium-emission scenario (SSP245) and by 9.29% under the high-emission scenario (SSP585). Specifically, the Global South and developing Pacific island countries are fragile regions that need scientific (marine protected area guidance) and financial (such as a foundation for marine protection) assistance to resist the increasing intensity and expansion of phytoplankton blooms under climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信