一种量子字符串匹配算法

IF 4.4 Q1 OPTICS
Konstantinos Prousalis, Asimakis Kydros, Nikos Konofaos
{"title":"一种量子字符串匹配算法","authors":"Konstantinos Prousalis,&nbsp;Asimakis Kydros,&nbsp;Nikos Konofaos","doi":"10.1002/qute.202400250","DOIUrl":null,"url":null,"abstract":"<p>A novel quantum algorithm for string-matching is introduced that significantly enhances the complexity of this fundamental operation, essential in numerous computing applications. The algorithm is designed as a composite quantum denoising procedure applied to a quantum-generated dot-matrix plot, which is treated as an image. This approach effectively identifies regions of similarity between two input strings of lengths <i>N</i> and <i>M</i>. For strings of equal length, the algorithm achieves a time complexity of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mi>l</mi>\n <mi>o</mi>\n <mi>g</mi>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mn>6</mn>\n <msup>\n <mi>N</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$O( {N + log( N ) + 6{{N}^2}} )$</annotation>\n </semantics></math> and a space complexity of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mrow>\n <mi>l</mi>\n <mi>o</mi>\n <mi>g</mi>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mi>N</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$O( {log( {2N} )} )$</annotation>\n </semantics></math>, demonstrating a clear advantage in quantum computational efficiency.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400250","citationCount":"0","resultStr":"{\"title\":\"A Quantum String-Matching Algorithm\",\"authors\":\"Konstantinos Prousalis,&nbsp;Asimakis Kydros,&nbsp;Nikos Konofaos\",\"doi\":\"10.1002/qute.202400250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel quantum algorithm for string-matching is introduced that significantly enhances the complexity of this fundamental operation, essential in numerous computing applications. The algorithm is designed as a composite quantum denoising procedure applied to a quantum-generated dot-matrix plot, which is treated as an image. This approach effectively identifies regions of similarity between two input strings of lengths <i>N</i> and <i>M</i>. For strings of equal length, the algorithm achieves a time complexity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mrow>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mi>l</mi>\\n <mi>o</mi>\\n <mi>g</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <mn>6</mn>\\n <msup>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O( {N + log( N ) + 6{{N}^2}} )$</annotation>\\n </semantics></math> and a space complexity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mrow>\\n <mi>l</mi>\\n <mi>o</mi>\\n <mi>g</mi>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mi>N</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O( {log( {2N} )} )$</annotation>\\n </semantics></math>, demonstrating a clear advantage in quantum computational efficiency.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400250\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种新的量子字符串匹配算法,它大大提高了这一基本操作的复杂性,这在许多计算应用中是必不可少的。该算法被设计为一种复合量子去噪过程,应用于量子生成的点阵图,并将其作为图像处理。该方法有效地识别长度为N和m的两个输入字符串之间的相似区域。对于长度相等的字符串,该算法的时间复杂度为O (N + l) O (N) + 6N 2)$ O({N + log(N) + 6{{N}^2}})$,空间复杂度为O(l O g(2n)))$ O({log({2N})})$,显示了量子计算效率的明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Quantum String-Matching Algorithm

A Quantum String-Matching Algorithm

A novel quantum algorithm for string-matching is introduced that significantly enhances the complexity of this fundamental operation, essential in numerous computing applications. The algorithm is designed as a composite quantum denoising procedure applied to a quantum-generated dot-matrix plot, which is treated as an image. This approach effectively identifies regions of similarity between two input strings of lengths N and M. For strings of equal length, the algorithm achieves a time complexity of O ( N + l o g ( N ) + 6 N 2 ) $O( {N + log( N ) + 6{{N}^2}} )$ and a space complexity of O ( l o g ( 2 N ) ) $O( {log( {2N} )} )$ , demonstrating a clear advantage in quantum computational efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信