拉丁美洲某特大城市的排放水平和一氧化碳源的鉴定:二元极坐标图和k-均值聚类的使用

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
José Abel Espinoza-Guillen, Marleni Beatriz Alderete-Malpartida, Sadyth Jhocelú Bernabé-Meza, David Fernando Vargas-La Rosa, Jimmy Hans Cañari-Cancho
{"title":"拉丁美洲某特大城市的排放水平和一氧化碳源的鉴定:二元极坐标图和k-均值聚类的使用","authors":"José Abel Espinoza-Guillen,&nbsp;Marleni Beatriz Alderete-Malpartida,&nbsp;Sadyth Jhocelú Bernabé-Meza,&nbsp;David Fernando Vargas-La Rosa,&nbsp;Jimmy Hans Cañari-Cancho","doi":"10.1007/s11869-024-01654-8","DOIUrl":null,"url":null,"abstract":"<div><p>The identification of the main air pollution sources becomes important in cities with rapid economic growth of developing countries in order to effectively prevent and control atmospheric pollution. In this research, carbon monoxide (CO) concentrations recorded during the period 2015–2019 at four air quality monitoring stations in the Metropolitan Area of Lima-Callao (MALC) were evaluated with the aim of determining the immission levels and identifying the main emission sources of this pollutant. Bivariate polar plots and the k-means algorithm were used to identify and classify areas with similar pollution characteristics, and the conditional bivariate probability function was used to identify potential zones where the largest contributions (≥ 75%) to air pollution in the study area originate. The average CO concentration ranged from 579.3 ± 3.8 µg/m<sup>3</sup> to 1490.9 ± 4.2 µg/m<sup>3</sup>. On average, the hourly variation showed two peaks, one in the morning (0700–0900 h LT) and another in the evening (1900–2100 h LT). On a weekly basis, the lowest CO concentrations were observed on Sundays. The results showed that the major contributions of CO come from gaseous emissions of vehicular traffic of 2- and 3-wheeled motorcycles, cars, combi vans and station wagons on the main avenues and highways using gasoline/gasohol as the main fuel, followed by diesel, LPG and NGV. The trends and patterns identified in this study show the vehicular flow on these major roads and fuel type as the main sources of CO pollution. A complementary analysis of black carbon concentrations revealed that forest fires and regional CO transport would influence the concentrations of this pollutant in the MALC. These findings contribute to the understanding of decision-makers in establishing strategies for improving air quality in metropolitan megacities such as the MALC. </p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"18 2","pages":"485 - 506"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immission levels and identification of carbon monoxide sources in a latin American megacity: use of bivariate polar plots and k-means clustering\",\"authors\":\"José Abel Espinoza-Guillen,&nbsp;Marleni Beatriz Alderete-Malpartida,&nbsp;Sadyth Jhocelú Bernabé-Meza,&nbsp;David Fernando Vargas-La Rosa,&nbsp;Jimmy Hans Cañari-Cancho\",\"doi\":\"10.1007/s11869-024-01654-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The identification of the main air pollution sources becomes important in cities with rapid economic growth of developing countries in order to effectively prevent and control atmospheric pollution. In this research, carbon monoxide (CO) concentrations recorded during the period 2015–2019 at four air quality monitoring stations in the Metropolitan Area of Lima-Callao (MALC) were evaluated with the aim of determining the immission levels and identifying the main emission sources of this pollutant. Bivariate polar plots and the k-means algorithm were used to identify and classify areas with similar pollution characteristics, and the conditional bivariate probability function was used to identify potential zones where the largest contributions (≥ 75%) to air pollution in the study area originate. The average CO concentration ranged from 579.3 ± 3.8 µg/m<sup>3</sup> to 1490.9 ± 4.2 µg/m<sup>3</sup>. On average, the hourly variation showed two peaks, one in the morning (0700–0900 h LT) and another in the evening (1900–2100 h LT). On a weekly basis, the lowest CO concentrations were observed on Sundays. The results showed that the major contributions of CO come from gaseous emissions of vehicular traffic of 2- and 3-wheeled motorcycles, cars, combi vans and station wagons on the main avenues and highways using gasoline/gasohol as the main fuel, followed by diesel, LPG and NGV. The trends and patterns identified in this study show the vehicular flow on these major roads and fuel type as the main sources of CO pollution. A complementary analysis of black carbon concentrations revealed that forest fires and regional CO transport would influence the concentrations of this pollutant in the MALC. These findings contribute to the understanding of decision-makers in establishing strategies for improving air quality in metropolitan megacities such as the MALC. </p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"18 2\",\"pages\":\"485 - 506\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01654-8\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01654-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在发展中国家经济快速增长的城市,为了有效地防治大气污染,识别主要的大气污染源变得非常重要。在本研究中,对利马-卡亚奥大都市区(MALC)四个空气质量监测站2015-2019年期间记录的一氧化碳(CO)浓度进行了评估,旨在确定排放水平并确定该污染物的主要排放源。二元极坐标图和k-means算法用于识别和分类具有相似污染特征的区域,并使用条件二元概率函数来识别研究区域空气污染贡献最大(≥75%)的潜在区域。平均CO浓度范围为579.3±3.8µg/m3 ~ 1490.9±4.2µg/m3。平均每小时变化呈现两个高峰,一个在早上(0700-0900 h LT),另一个在晚上(1900-2100 h LT)。按星期计算,星期日的一氧化碳浓度最低。结果表明,主要道路和高速公路上以汽油/汽油醇为主要燃料的2轮和3轮摩托车、汽车、混合货车和旅行车的气体排放对CO的贡献最大,其次是柴油、液化石油气和天然气车。本研究确定的趋势和模式表明,这些主要道路上的车辆流量和燃料类型是CO污染的主要来源。对黑碳浓度的补充分析表明,森林火灾和区域CO运输会影响MALC中这种污染物的浓度。这些发现有助于决策者制定改善大都市(如MALC)空气质量的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immission levels and identification of carbon monoxide sources in a latin American megacity: use of bivariate polar plots and k-means clustering

The identification of the main air pollution sources becomes important in cities with rapid economic growth of developing countries in order to effectively prevent and control atmospheric pollution. In this research, carbon monoxide (CO) concentrations recorded during the period 2015–2019 at four air quality monitoring stations in the Metropolitan Area of Lima-Callao (MALC) were evaluated with the aim of determining the immission levels and identifying the main emission sources of this pollutant. Bivariate polar plots and the k-means algorithm were used to identify and classify areas with similar pollution characteristics, and the conditional bivariate probability function was used to identify potential zones where the largest contributions (≥ 75%) to air pollution in the study area originate. The average CO concentration ranged from 579.3 ± 3.8 µg/m3 to 1490.9 ± 4.2 µg/m3. On average, the hourly variation showed two peaks, one in the morning (0700–0900 h LT) and another in the evening (1900–2100 h LT). On a weekly basis, the lowest CO concentrations were observed on Sundays. The results showed that the major contributions of CO come from gaseous emissions of vehicular traffic of 2- and 3-wheeled motorcycles, cars, combi vans and station wagons on the main avenues and highways using gasoline/gasohol as the main fuel, followed by diesel, LPG and NGV. The trends and patterns identified in this study show the vehicular flow on these major roads and fuel type as the main sources of CO pollution. A complementary analysis of black carbon concentrations revealed that forest fires and regional CO transport would influence the concentrations of this pollutant in the MALC. These findings contribute to the understanding of decision-makers in establishing strategies for improving air quality in metropolitan megacities such as the MALC. 

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Quality Atmosphere and Health
Air Quality Atmosphere and Health ENVIRONMENTAL SCIENCES-
CiteScore
8.80
自引率
2.00%
发文量
146
审稿时长
>12 weeks
期刊介绍: Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health. It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes. International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals. Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements. This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信