Amara Zaheer, Hashmat Ali, Ehtsham Azhar, Muhammad Jamal
{"title":"摩尔-吉布森-汤普森效应在非局部固体介质中波的传播和反射中的应用","authors":"Amara Zaheer, Hashmat Ali, Ehtsham Azhar, Muhammad Jamal","doi":"10.1007/s00419-025-02784-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the wave propagation and reflection are studied in nonlocal solid under the impact of Moore Gibson–Thompson model. The governing equations are Helmholtzed and converted into the homogeneous algebraic system of equations. The algebraic equations have non-trivial solutions that can provide the dispersion relation associated with propagation speed. Two coupled longitudinal waves (P-waves and T-waves) and one transverse wave (SV-wave) can be obtained from the dispersion relation. In this case, the ratios of the amplitudes of the reflected waves are calculated analytically by imposing a given set of appropriate boundary conditions. The amplitude ratio and propagation speed are also plotted graphically. The influence of nonlocality and thermal relaxation time parameter on the gained results is examined and visualized through graphical representations. Optimal results are obtained by neglecting the thermal relaxation time parameter.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Moore Gibson–Thompson effects on wave propagation and reflection in nonlocal solid medium\",\"authors\":\"Amara Zaheer, Hashmat Ali, Ehtsham Azhar, Muhammad Jamal\",\"doi\":\"10.1007/s00419-025-02784-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the wave propagation and reflection are studied in nonlocal solid under the impact of Moore Gibson–Thompson model. The governing equations are Helmholtzed and converted into the homogeneous algebraic system of equations. The algebraic equations have non-trivial solutions that can provide the dispersion relation associated with propagation speed. Two coupled longitudinal waves (P-waves and T-waves) and one transverse wave (SV-wave) can be obtained from the dispersion relation. In this case, the ratios of the amplitudes of the reflected waves are calculated analytically by imposing a given set of appropriate boundary conditions. The amplitude ratio and propagation speed are also plotted graphically. The influence of nonlocality and thermal relaxation time parameter on the gained results is examined and visualized through graphical representations. Optimal results are obtained by neglecting the thermal relaxation time parameter.</p></div>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":\"95 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00419-025-02784-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-025-02784-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
本文在摩尔-吉布森-汤普森模型的影响下,研究了非局部固体中的波传播和反射。对控制方程进行了 Helmholtzed 处理,并将其转换为同质代数方程系。代数方程有非三维解,可以提供与传播速度相关的频散关系。根据频散关系可以得到两个耦合纵波(P 波和 T 波)和一个横波(SV 波)。在这种情况下,反射波的振幅比可通过施加一组给定的适当边界条件进行分析计算。振幅比和传播速度也可以用图形表示出来。通过图形表示法,研究了非位置性和热弛豫时间参数对所得结果的影响,并将其可视化。忽略热松弛时间参数可获得最佳结果。
Application of Moore Gibson–Thompson effects on wave propagation and reflection in nonlocal solid medium
In this paper, the wave propagation and reflection are studied in nonlocal solid under the impact of Moore Gibson–Thompson model. The governing equations are Helmholtzed and converted into the homogeneous algebraic system of equations. The algebraic equations have non-trivial solutions that can provide the dispersion relation associated with propagation speed. Two coupled longitudinal waves (P-waves and T-waves) and one transverse wave (SV-wave) can be obtained from the dispersion relation. In this case, the ratios of the amplitudes of the reflected waves are calculated analytically by imposing a given set of appropriate boundary conditions. The amplitude ratio and propagation speed are also plotted graphically. The influence of nonlocality and thermal relaxation time parameter on the gained results is examined and visualized through graphical representations. Optimal results are obtained by neglecting the thermal relaxation time parameter.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.