TPL-SLAM:基于光流点线跟踪的实时单目热惯性SLAM

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Luguang Lai;Linyang Li;Yuxuan Zhou;Letian Zhang;Dongqing Zhao
{"title":"TPL-SLAM:基于光流点线跟踪的实时单目热惯性SLAM","authors":"Luguang Lai;Linyang Li;Yuxuan Zhou;Letian Zhang;Dongqing Zhao","doi":"10.1109/JSEN.2025.3537164","DOIUrl":null,"url":null,"abstract":"Visual simultaneous localization and mapping (SLAM) systems perform poorly or even fail to work under extreme conditions such as insufficient light, smoke, and fog, and the infrared camera has stronger anti-interference ability in these challenging scenes. However, the high noise and poor imaging quality of infrared camera severely affect the performance of infrared SLAM. Considering the imaging characteristics of the infrared camera and the weak-texture features of subterranean structured scenes, a point-line combined thermal–inertial SLAM system (TPL-SLAM) is proposed. To improve the computational efficiency of point-line combined SLAM, a superior ELSED algorithm is employed to extract line features. Meanwhile, a 3 degrees-of-freedom (DOF) line feature optical flow tracking algorithm is proposed to track line features between continuous frames. Then, the back-end module optimizes inertial measurement unit (IMU), point, and line feature factors in real-time based on a sliding window and jointly performs loop detection with the point and line features on keyframes. Extensive experiments were conducted on real-world datasets to validate the effectiveness of TPL-SLAM. The results showed that TPL-SLAM outperformed the current advanced monocular visual-inertial system (VINS). Besides, parallel loop detection with point-line features can effectively reduce the risk of false loops. The computational efficiency of the proposed line feature extraction and tracking module is superior to those of PL-VINS and EPLF-VINS and can meet the requirements of real-time operation. The data and code for line feature processing are accessible at <uri>https://github.com/Fireflyatcode/TPL_SLAM</uri>.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 6","pages":"10015-10029"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891346","citationCount":"0","resultStr":"{\"title\":\"TPL-SLAM: Real-Time Monocular Thermal–Inertial SLAM With Point–Line Tracked by Optical Flow\",\"authors\":\"Luguang Lai;Linyang Li;Yuxuan Zhou;Letian Zhang;Dongqing Zhao\",\"doi\":\"10.1109/JSEN.2025.3537164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual simultaneous localization and mapping (SLAM) systems perform poorly or even fail to work under extreme conditions such as insufficient light, smoke, and fog, and the infrared camera has stronger anti-interference ability in these challenging scenes. However, the high noise and poor imaging quality of infrared camera severely affect the performance of infrared SLAM. Considering the imaging characteristics of the infrared camera and the weak-texture features of subterranean structured scenes, a point-line combined thermal–inertial SLAM system (TPL-SLAM) is proposed. To improve the computational efficiency of point-line combined SLAM, a superior ELSED algorithm is employed to extract line features. Meanwhile, a 3 degrees-of-freedom (DOF) line feature optical flow tracking algorithm is proposed to track line features between continuous frames. Then, the back-end module optimizes inertial measurement unit (IMU), point, and line feature factors in real-time based on a sliding window and jointly performs loop detection with the point and line features on keyframes. Extensive experiments were conducted on real-world datasets to validate the effectiveness of TPL-SLAM. The results showed that TPL-SLAM outperformed the current advanced monocular visual-inertial system (VINS). Besides, parallel loop detection with point-line features can effectively reduce the risk of false loops. The computational efficiency of the proposed line feature extraction and tracking module is superior to those of PL-VINS and EPLF-VINS and can meet the requirements of real-time operation. The data and code for line feature processing are accessible at <uri>https://github.com/Fireflyatcode/TPL_SLAM</uri>.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 6\",\"pages\":\"10015-10029\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10891346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891346/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10891346/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

视觉同步定位与测绘(SLAM)系统在光线不足、烟雾、雾等极端条件下表现不佳甚至无法工作,红外摄像机在这些具有挑战性的场景下具有更强的抗干扰能力。然而,红外相机的高噪声和成像质量差严重影响了红外SLAM的性能。考虑到红外相机的成像特点和地下结构场景的弱纹理特征,提出了一种点线结合热惯性SLAM系统(TPL-SLAM)。为了提高点-线组合SLAM的计算效率,采用了一种改进的ELSED算法提取直线特征。同时,提出了一种3自由度线特征光流跟踪算法来跟踪连续帧之间的线特征。然后,后端模块基于滑动窗口实时优化惯性测量单元(IMU)、点、线特征因子,利用关键帧上的点、线特征共同进行环检测。在实际数据集上进行了大量实验,以验证TPL-SLAM的有效性。结果表明,TPL-SLAM系统优于现有的先进单目视觉惯性系统(VINS)。此外,采用点线特征的并行环路检测可以有效降低假环路的风险。所提出的线特征提取与跟踪模块的计算效率优于PL-VINS和EPLF-VINS,能够满足实时运行的要求。行特征处理的数据和代码可在https://github.com/Fireflyatcode/TPL_SLAM上访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TPL-SLAM: Real-Time Monocular Thermal–Inertial SLAM With Point–Line Tracked by Optical Flow
Visual simultaneous localization and mapping (SLAM) systems perform poorly or even fail to work under extreme conditions such as insufficient light, smoke, and fog, and the infrared camera has stronger anti-interference ability in these challenging scenes. However, the high noise and poor imaging quality of infrared camera severely affect the performance of infrared SLAM. Considering the imaging characteristics of the infrared camera and the weak-texture features of subterranean structured scenes, a point-line combined thermal–inertial SLAM system (TPL-SLAM) is proposed. To improve the computational efficiency of point-line combined SLAM, a superior ELSED algorithm is employed to extract line features. Meanwhile, a 3 degrees-of-freedom (DOF) line feature optical flow tracking algorithm is proposed to track line features between continuous frames. Then, the back-end module optimizes inertial measurement unit (IMU), point, and line feature factors in real-time based on a sliding window and jointly performs loop detection with the point and line features on keyframes. Extensive experiments were conducted on real-world datasets to validate the effectiveness of TPL-SLAM. The results showed that TPL-SLAM outperformed the current advanced monocular visual-inertial system (VINS). Besides, parallel loop detection with point-line features can effectively reduce the risk of false loops. The computational efficiency of the proposed line feature extraction and tracking module is superior to those of PL-VINS and EPLF-VINS and can meet the requirements of real-time operation. The data and code for line feature processing are accessible at https://github.com/Fireflyatcode/TPL_SLAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信