利用压电光电子效应优化InxGa1-xN/GaN量子阱太阳能电池的效率:外部应变的影响

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Hamza Bousdra , Noureddine Ben Afkir , Jaafar Meziane , Mimoun Zazoui
{"title":"利用压电光电子效应优化InxGa1-xN/GaN量子阱太阳能电池的效率:外部应变的影响","authors":"Hamza Bousdra ,&nbsp;Noureddine Ben Afkir ,&nbsp;Jaafar Meziane ,&nbsp;Mimoun Zazoui","doi":"10.1016/j.solener.2025.113425","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the efficiency enhancement of <span><math><mrow><msub><mrow><mi>I</mi><mi>n</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>N</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>N</mi></mrow></math></span> multiple quantum well (MQW) solar cells through the application of piezo-phototronic effect, which modifies piezoelectric polarization charges at interfaces to raise efficiency. We investigated the impact of external strain on the performance of these solar cells to address the problem of lattice mismatch and its effect on energy conversion efficiency. Using a numerical computational model, our approach involves examining the effects of external strain on the electrical, optical, and band structure properties of the cells. The results showed a notable improvement in energy conversion efficiency with increases of 29.35 % and 21.28 %, respectively, for indium compositions of 0.2 and 0.35. Additionally, the photocurrent density increased from 1.61 mA/cm<sup>2</sup> to 2.43 mA/cm<sup>2</sup> and from 4.44 mA/cm<sup>2</sup> to 5.83 mA/cm<sup>2</sup> for both compositions. Band energy realignment calculations clarify that this enhancement is due to the correction of piezoelectric charges caused by lattice mismatch strain. Our findings show that the piezo-phototronic effect can be used to optimize <span><math><mrow><msub><mrow><mi>I</mi><mi>n</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>N</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>N</mi></mrow></math></span> MQW solar cells, provide a viable means of increasing the use of solar energy and developing solar technology.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"291 ","pages":"Article 113425"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the efficiency of InxGa1-xN/GaN quantum well solar cells using piezo-phototronic effects: The impact of external strain\",\"authors\":\"Hamza Bousdra ,&nbsp;Noureddine Ben Afkir ,&nbsp;Jaafar Meziane ,&nbsp;Mimoun Zazoui\",\"doi\":\"10.1016/j.solener.2025.113425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work explores the efficiency enhancement of <span><math><mrow><msub><mrow><mi>I</mi><mi>n</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>N</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>N</mi></mrow></math></span> multiple quantum well (MQW) solar cells through the application of piezo-phototronic effect, which modifies piezoelectric polarization charges at interfaces to raise efficiency. We investigated the impact of external strain on the performance of these solar cells to address the problem of lattice mismatch and its effect on energy conversion efficiency. Using a numerical computational model, our approach involves examining the effects of external strain on the electrical, optical, and band structure properties of the cells. The results showed a notable improvement in energy conversion efficiency with increases of 29.35 % and 21.28 %, respectively, for indium compositions of 0.2 and 0.35. Additionally, the photocurrent density increased from 1.61 mA/cm<sup>2</sup> to 2.43 mA/cm<sup>2</sup> and from 4.44 mA/cm<sup>2</sup> to 5.83 mA/cm<sup>2</sup> for both compositions. Band energy realignment calculations clarify that this enhancement is due to the correction of piezoelectric charges caused by lattice mismatch strain. Our findings show that the piezo-phototronic effect can be used to optimize <span><math><mrow><msub><mrow><mi>I</mi><mi>n</mi></mrow><mi>x</mi></msub><msub><mrow><mi>G</mi><mi>a</mi></mrow><mrow><mn>1</mn><mo>-</mo><mi>x</mi></mrow></msub><mi>N</mi><mo>/</mo><mi>G</mi><mi>a</mi><mi>N</mi></mrow></math></span> MQW solar cells, provide a viable means of increasing the use of solar energy and developing solar technology.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"291 \",\"pages\":\"Article 113425\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X25001884\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001884","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过应用压电光电子效应,探讨了InxGa1-xN/GaN多量子阱(MQW)太阳能电池的效率提高,该效应通过改变界面上的压电极化电荷来提高效率。我们研究了外部应变对这些太阳能电池性能的影响,以解决晶格失配问题及其对能量转换效率的影响。使用数值计算模型,我们的方法包括检查外部应变对细胞的电学,光学和能带结构特性的影响。结果表明,当铟含量为0.2和0.35时,能量转换效率分别提高29.35%和21.28%。此外,两种成分的光电流密度从1.61 mA/cm2增加到2.43 mA/cm2,从4.44 mA/cm2增加到5.83 mA/cm2。能带能量重新排列计算表明,这种增强是由于晶格失配应变引起的压电电荷的校正。我们的研究结果表明,压电光电子效应可以用于优化InxGa1-xN/GaN MQW太阳能电池,为增加太阳能的使用和发展太阳能技术提供了一种可行的手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the efficiency of InxGa1-xN/GaN quantum well solar cells using piezo-phototronic effects: The impact of external strain
This work explores the efficiency enhancement of InxGa1-xN/GaN multiple quantum well (MQW) solar cells through the application of piezo-phototronic effect, which modifies piezoelectric polarization charges at interfaces to raise efficiency. We investigated the impact of external strain on the performance of these solar cells to address the problem of lattice mismatch and its effect on energy conversion efficiency. Using a numerical computational model, our approach involves examining the effects of external strain on the electrical, optical, and band structure properties of the cells. The results showed a notable improvement in energy conversion efficiency with increases of 29.35 % and 21.28 %, respectively, for indium compositions of 0.2 and 0.35. Additionally, the photocurrent density increased from 1.61 mA/cm2 to 2.43 mA/cm2 and from 4.44 mA/cm2 to 5.83 mA/cm2 for both compositions. Band energy realignment calculations clarify that this enhancement is due to the correction of piezoelectric charges caused by lattice mismatch strain. Our findings show that the piezo-phototronic effect can be used to optimize InxGa1-xN/GaN MQW solar cells, provide a viable means of increasing the use of solar energy and developing solar technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信