Al-Fum金属-有机骨架衍生多孔碳的高效界面太阳能驱动蒸发和水力联产

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Erhui Xu , Weikang Han , Guixin Hu , Huajian Liu , Huiyue Wang , Mengting Qin , Xi Chen , Nan Yao , Ran Niu , Jiang Gong
{"title":"Al-Fum金属-有机骨架衍生多孔碳的高效界面太阳能驱动蒸发和水力联产","authors":"Erhui Xu ,&nbsp;Weikang Han ,&nbsp;Guixin Hu ,&nbsp;Huajian Liu ,&nbsp;Huiyue Wang ,&nbsp;Mengting Qin ,&nbsp;Xi Chen ,&nbsp;Nan Yao ,&nbsp;Ran Niu ,&nbsp;Jiang Gong","doi":"10.1016/j.susmat.2025.e01356","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of solar-driven water evaporation and power generation provides a promising approach to alleviate energy problem and freshwater shortage. However, developing multi-functional materials for water evaporation and power co-generation remains challenging. Herein, porous carbon polyhedra (PCP) is synthesized by the controlled carbonization of aluminum fumarate metal-organic framework (Al-Fum MOF) for fabricating water evaporation and energy harvesting devices. Under 1 Sun irradiation, the evaporation rate is up to 2.84 kg m<sup>−2</sup> h<sup>−1</sup>, accompanied by the photothermal conversion efficiency of 98.8 %. Additionally, the power generation unit based on the PCP evaporator achieves the open-circuit voltage of 197 mV, exhibiting commendable cycle stability. The rich pore structure and abundant oxygen-containing functional groups are pivotal parameters for power generation. The result of molecular dynamics simulation indicates that the negatively charged ions are inhibited in the nanochannels of the negatively charged PCP surface, resulting in the Na<sup>+</sup> concentration difference, triggering the potential difference. This study reveals the mechanism on water evaporation and power co-generation in porous carbon materials, and offers a pathway for the development of advanced devices for water production and hydropower co-generation.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"44 ","pages":"Article e01356"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient interfacial solar-driven evaporation and hydroelectric co-generation by Al-Fum metal-organic framework-derived porous carbon\",\"authors\":\"Erhui Xu ,&nbsp;Weikang Han ,&nbsp;Guixin Hu ,&nbsp;Huajian Liu ,&nbsp;Huiyue Wang ,&nbsp;Mengting Qin ,&nbsp;Xi Chen ,&nbsp;Nan Yao ,&nbsp;Ran Niu ,&nbsp;Jiang Gong\",\"doi\":\"10.1016/j.susmat.2025.e01356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combination of solar-driven water evaporation and power generation provides a promising approach to alleviate energy problem and freshwater shortage. However, developing multi-functional materials for water evaporation and power co-generation remains challenging. Herein, porous carbon polyhedra (PCP) is synthesized by the controlled carbonization of aluminum fumarate metal-organic framework (Al-Fum MOF) for fabricating water evaporation and energy harvesting devices. Under 1 Sun irradiation, the evaporation rate is up to 2.84 kg m<sup>−2</sup> h<sup>−1</sup>, accompanied by the photothermal conversion efficiency of 98.8 %. Additionally, the power generation unit based on the PCP evaporator achieves the open-circuit voltage of 197 mV, exhibiting commendable cycle stability. The rich pore structure and abundant oxygen-containing functional groups are pivotal parameters for power generation. The result of molecular dynamics simulation indicates that the negatively charged ions are inhibited in the nanochannels of the negatively charged PCP surface, resulting in the Na<sup>+</sup> concentration difference, triggering the potential difference. This study reveals the mechanism on water evaporation and power co-generation in porous carbon materials, and offers a pathway for the development of advanced devices for water production and hydropower co-generation.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"44 \",\"pages\":\"Article e01356\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725001241\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725001241","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

太阳能驱动的水蒸发与发电相结合为缓解能源问题和淡水短缺提供了一种有希望的方法。然而,开发用于水蒸发和热电联产的多功能材料仍然具有挑战性。本文通过富马酸铝金属有机骨架(al- fm MOF)的可控碳化合成多孔碳多面体(PCP),用于制造水蒸发和能量收集装置。在1次太阳照射下,蒸发速率可达2.84 kg m−2 h−1,光热转换效率为98.8%。此外,基于PCP蒸发器的发电机组达到了197 mV的开路电压,具有良好的循环稳定性。丰富的孔隙结构和丰富的含氧官能团是发电的关键参数。分子动力学模拟结果表明,带负电荷的离子在带负电荷的PCP表面的纳米通道中受到抑制,导致Na+浓度差,引发电位差。本研究揭示了多孔碳材料中水分蒸发和热电联产的机理,为开发先进的制水和水电热电联产装置提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient interfacial solar-driven evaporation and hydroelectric co-generation by Al-Fum metal-organic framework-derived porous carbon

Efficient interfacial solar-driven evaporation and hydroelectric co-generation by Al-Fum metal-organic framework-derived porous carbon
The combination of solar-driven water evaporation and power generation provides a promising approach to alleviate energy problem and freshwater shortage. However, developing multi-functional materials for water evaporation and power co-generation remains challenging. Herein, porous carbon polyhedra (PCP) is synthesized by the controlled carbonization of aluminum fumarate metal-organic framework (Al-Fum MOF) for fabricating water evaporation and energy harvesting devices. Under 1 Sun irradiation, the evaporation rate is up to 2.84 kg m−2 h−1, accompanied by the photothermal conversion efficiency of 98.8 %. Additionally, the power generation unit based on the PCP evaporator achieves the open-circuit voltage of 197 mV, exhibiting commendable cycle stability. The rich pore structure and abundant oxygen-containing functional groups are pivotal parameters for power generation. The result of molecular dynamics simulation indicates that the negatively charged ions are inhibited in the nanochannels of the negatively charged PCP surface, resulting in the Na+ concentration difference, triggering the potential difference. This study reveals the mechanism on water evaporation and power co-generation in porous carbon materials, and offers a pathway for the development of advanced devices for water production and hydropower co-generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信