Yating Qin , Yan Lin , Chao Tian , Yujie Qi , Shuling Wang , Xiaoyuan Chen , Wenxing Gu
{"title":"pH-responsive nanocomplex for active transport of aPD-1 and PTX to enhance cancer chemoimmunotherapy","authors":"Yating Qin , Yan Lin , Chao Tian , Yujie Qi , Shuling Wang , Xiaoyuan Chen , Wenxing Gu","doi":"10.1016/j.nantod.2025.102710","DOIUrl":null,"url":null,"abstract":"<div><div>Immune checkpoint blockade (ICB) therapy has emerged as a promising avenue for the treatment of malignant tumors. Nonetheless, the efficacy of this approach is constrained by low anti-tumor immunity and restricted intratumoral delivery of immune checkpoint inhibitors (ICIs) in solid tumors. In this study, a pH-responsive nanocomplex (BRM/PTX/aPD-1) was developed for the active transport of aPD-1 and PTX, thereby enhancing cancer chemoimmunotherapy. BRM/PTX/aPD-1 was prepared by using dynamic and reversible benzoic-imine bonds cross-linked bovine albumin (BSA), anti-PD-1 antibody (aPD-1) and PTX-loaded polylysine dendrimers. In the acidic tumor microenvironment, BRM/PTX/aPD-1 exhibited a charge reversal from negative to positive due to the hydrolysis of the β-carboxylic amide structure, which triggered cation-induced transcytosis. This process enabled active transport of adequate amounts of BRM/PTX/aPD-1 to the tumor parenchyma, where it was degraded by further hydrolysis of benzoic-imine bonds and effectively released aPD-1 and PTX. The nanocomplex demonstrated notable intratumoral permeability both <em>in vitro</em> and <em>in vivo</em>, particularly enhancing the delivery of aPD-1. Additionally, the nanocomplex showed robust anti-tumor activity in an orthotopic breast cancer model, significantly inhibiting tumor proliferation and preventing the progression of lung metastasis. This pH-responsive nanocomplex presents a promising platform for improved intratumoral delivery of ICIs and emerges as a practical solution for overcoming tumor immunosuppression.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"62 ","pages":"Article 102710"},"PeriodicalIF":13.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000829","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
pH-responsive nanocomplex for active transport of aPD-1 and PTX to enhance cancer chemoimmunotherapy
Immune checkpoint blockade (ICB) therapy has emerged as a promising avenue for the treatment of malignant tumors. Nonetheless, the efficacy of this approach is constrained by low anti-tumor immunity and restricted intratumoral delivery of immune checkpoint inhibitors (ICIs) in solid tumors. In this study, a pH-responsive nanocomplex (BRM/PTX/aPD-1) was developed for the active transport of aPD-1 and PTX, thereby enhancing cancer chemoimmunotherapy. BRM/PTX/aPD-1 was prepared by using dynamic and reversible benzoic-imine bonds cross-linked bovine albumin (BSA), anti-PD-1 antibody (aPD-1) and PTX-loaded polylysine dendrimers. In the acidic tumor microenvironment, BRM/PTX/aPD-1 exhibited a charge reversal from negative to positive due to the hydrolysis of the β-carboxylic amide structure, which triggered cation-induced transcytosis. This process enabled active transport of adequate amounts of BRM/PTX/aPD-1 to the tumor parenchyma, where it was degraded by further hydrolysis of benzoic-imine bonds and effectively released aPD-1 and PTX. The nanocomplex demonstrated notable intratumoral permeability both in vitro and in vivo, particularly enhancing the delivery of aPD-1. Additionally, the nanocomplex showed robust anti-tumor activity in an orthotopic breast cancer model, significantly inhibiting tumor proliferation and preventing the progression of lung metastasis. This pH-responsive nanocomplex presents a promising platform for improved intratumoral delivery of ICIs and emerges as a practical solution for overcoming tumor immunosuppression.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.