时空分数阶fitzhuh - nagumo方程的Petrov-Galerkin有限元法

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Joseph N. Onyeoghane, Ignatius N. Njoseh, John N. Igabari
{"title":"时空分数阶fitzhuh - nagumo方程的Petrov-Galerkin有限元法","authors":"Joseph N. Onyeoghane,&nbsp;Ignatius N. Njoseh,&nbsp;John N. Igabari","doi":"10.1016/j.sciaf.2025.e02623","DOIUrl":null,"url":null,"abstract":"<div><div>The Classical Nagumo equation is a non-linear reaction diffusion equation which is modelled to analyse the transmission of nerve impulses. Its Fractional Order in the Riemann–Liouville sense simplifies the model knowing that the Fractional Calculus of arbitrary order handles better real life problems than the classical calculus. We here present a Petrov–Galerkin Finite Element Method, perturbed by the newly developed Mamadu–Njoseh Orthogonal Polynomials for the solution of this model. This work aims at determining the compatibility of the Mamadu–Njoseh polynomials as basis function for the Petrov–Galerkin Finite Element Method, and obtaining an approximate solution for the FitzHugh–Nagumo Equation combined with the Riemann–Liouville fractional calculus. Our result compared with that found in literature showed that our method converges better with minimal error to the exact solution.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02623"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Petrov–Galerkin Finite Element Method for the space time fractional Fitzhugh–Nagumo equation\",\"authors\":\"Joseph N. Onyeoghane,&nbsp;Ignatius N. Njoseh,&nbsp;John N. Igabari\",\"doi\":\"10.1016/j.sciaf.2025.e02623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Classical Nagumo equation is a non-linear reaction diffusion equation which is modelled to analyse the transmission of nerve impulses. Its Fractional Order in the Riemann–Liouville sense simplifies the model knowing that the Fractional Calculus of arbitrary order handles better real life problems than the classical calculus. We here present a Petrov–Galerkin Finite Element Method, perturbed by the newly developed Mamadu–Njoseh Orthogonal Polynomials for the solution of this model. This work aims at determining the compatibility of the Mamadu–Njoseh polynomials as basis function for the Petrov–Galerkin Finite Element Method, and obtaining an approximate solution for the FitzHugh–Nagumo Equation combined with the Riemann–Liouville fractional calculus. Our result compared with that found in literature showed that our method converges better with minimal error to the exact solution.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"28 \",\"pages\":\"Article e02623\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625000936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625000936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

经典南云方程是一个非线性反应扩散方程,用于分析神经冲动的传递。它在Riemann-Liouville意义上的分数阶简化了模型,因为知道任意阶的分数阶微积分比经典微积分更好地处理现实生活中的问题。本文提出了一种Petrov-Galerkin有限元方法,该方法采用了新发展的Mamadu-Njoseh正交多项式来求解该模型。本文旨在确定Mamadu-Njoseh多项式作为Petrov-Galerkin有限元法基函数的相容性,并结合Riemann-Liouville分数阶演算得到fitzhuh - nagumo方程的近似解。结果表明,该方法收敛性好,逼近精确解的误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Petrov–Galerkin Finite Element Method for the space time fractional Fitzhugh–Nagumo equation
The Classical Nagumo equation is a non-linear reaction diffusion equation which is modelled to analyse the transmission of nerve impulses. Its Fractional Order in the Riemann–Liouville sense simplifies the model knowing that the Fractional Calculus of arbitrary order handles better real life problems than the classical calculus. We here present a Petrov–Galerkin Finite Element Method, perturbed by the newly developed Mamadu–Njoseh Orthogonal Polynomials for the solution of this model. This work aims at determining the compatibility of the Mamadu–Njoseh polynomials as basis function for the Petrov–Galerkin Finite Element Method, and obtaining an approximate solution for the FitzHugh–Nagumo Equation combined with the Riemann–Liouville fractional calculus. Our result compared with that found in literature showed that our method converges better with minimal error to the exact solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信