IF 0.8 2区 数学 Q2 MATHEMATICS
Hua Sun , Hui-Xiang Chen , Yinhuo Zhang
{"title":"Representations of the small quasi-quantum group","authors":"Hua Sun ,&nbsp;Hui-Xiang Chen ,&nbsp;Yinhuo Zhang","doi":"10.1016/j.jalgebra.2025.02.025","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the representation theory of the small quantum group <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span> and the small quasi-quantum group <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where <em>q</em> is a primitive <em>n</em>-th root of unity and <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span> is odd. All finite dimensional indecomposable <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span>-modules are described and classified. Moreover, the decomposition rules for the tensor products of <span><math><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub></math></span>-modules are given. Finally, we describe the structures of the projective class ring <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> and the Green ring <span><math><mi>r</mi><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>. We show that <span><math><mi>r</mi><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> is isomorphic to a subring of <span><math><mi>r</mi><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>, and the stable Green rings <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>s</mi><mi>t</mi></mrow></msub><mo>(</mo><msub><mrow><mover><mrow><mi>U</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> are isomorphic.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"673 ","pages":"Pages 188-221"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000948","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了小量子群 U‾q 和小准量子群 U˜q(其中 q 是基元 n 次方根,n>2 为奇数)的表示理论。对所有有限维不可分解的 U˜q-模块进行了描述和分类。此外,我们还给出了 U˜q-模块的张量积的分解规则。最后,我们描述了投影类环 rp(U˜q) 和格林环 r(U˜q) 的结构。我们证明了r(U‾q)与r(U˜q)的子环同构,稳定绿环rst(U˜q)与rst(U‾q)同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of the small quasi-quantum group
In this paper, we study the representation theory of the small quantum group Uq and the small quasi-quantum group U˜q, where q is a primitive n-th root of unity and n>2 is odd. All finite dimensional indecomposable U˜q-modules are described and classified. Moreover, the decomposition rules for the tensor products of U˜q-modules are given. Finally, we describe the structures of the projective class ring rp(U˜q) and the Green ring r(U˜q). We show that r(Uq) is isomorphic to a subring of r(U˜q), and the stable Green rings rst(U˜q) and rst(Uq) are isomorphic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信