作用于Dirichlet级数的Bergman空间的Volterra算子

IF 1.7 2区 数学 Q1 MATHEMATICS
Carlos Gómez-Cabello , Pascal Lefèvre , Hervé Queffélec
{"title":"作用于Dirichlet级数的Bergman空间的Volterra算子","authors":"Carlos Gómez-Cabello ,&nbsp;Pascal Lefèvre ,&nbsp;Hervé Queffélec","doi":"10.1016/j.jfa.2025.110906","DOIUrl":null,"url":null,"abstract":"<div><div>Since their introduction in 1997, Hardy spaces of Dirichlet series have been broadly studied. The increasing interest which they sparked motivated the introduction of new such spaces, as the Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> considered here, with <em>μ</em> a probability measure. Similarly, recent lines of research have focused on the study of some classical operators acting on these spaces, like the Volterra operator <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. In this work, we introduce a new family of spaces of Dirichlet series, the <span><math><msub><mrow><mtext>Bloch</mtext></mrow><mrow><mi>μ</mi></mrow></msub></math></span>-spaces. We can provide, in terms of those spaces, a sufficient condition for this Volterra operator to act boundedly on the spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. We also establish a necessary condition for a specific choice of <em>μ</em>. Sufficient and necessary conditions for compactness are also proven. The non-membership in Schatten classes is established, as well as a radicality result for some Bloch space.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 3","pages":"Article 110906"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volterra operator acting on Bergman spaces of Dirichlet series\",\"authors\":\"Carlos Gómez-Cabello ,&nbsp;Pascal Lefèvre ,&nbsp;Hervé Queffélec\",\"doi\":\"10.1016/j.jfa.2025.110906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since their introduction in 1997, Hardy spaces of Dirichlet series have been broadly studied. The increasing interest which they sparked motivated the introduction of new such spaces, as the Bergman spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span> considered here, with <em>μ</em> a probability measure. Similarly, recent lines of research have focused on the study of some classical operators acting on these spaces, like the Volterra operator <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. In this work, we introduce a new family of spaces of Dirichlet series, the <span><math><msub><mrow><mtext>Bloch</mtext></mrow><mrow><mi>μ</mi></mrow></msub></math></span>-spaces. We can provide, in terms of those spaces, a sufficient condition for this Volterra operator to act boundedly on the spaces <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>μ</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>. We also establish a necessary condition for a specific choice of <em>μ</em>. Sufficient and necessary conditions for compactness are also proven. The non-membership in Schatten classes is established, as well as a radicality result for some Bloch space.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 3\",\"pages\":\"Article 110906\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000886\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000886","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Dirichlet级数的Hardy空间自1997年提出以来,得到了广泛的研究。它们引起的兴趣越来越大,这促使了新的空间的引入,比如这里考虑的伯格曼空间a μp,它有μ一个概率度量。类似地,最近的研究集中在研究一些作用于这些空间的经典算子,比如Volterra算子Vg。在这项工作中,我们引入了狄利克雷级数的一个新的空间族——布洛赫μ空间。在这些空间中,我们可以给出Volterra算子有界作用于空间a μp的一个充分条件。我们还建立了μ的特定选择的必要条件。并证明了紧性的充分必要条件。建立了Schatten类的非隶属性,并给出了某个Bloch空间的激进性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volterra operator acting on Bergman spaces of Dirichlet series
Since their introduction in 1997, Hardy spaces of Dirichlet series have been broadly studied. The increasing interest which they sparked motivated the introduction of new such spaces, as the Bergman spaces Aμp considered here, with μ a probability measure. Similarly, recent lines of research have focused on the study of some classical operators acting on these spaces, like the Volterra operator Vg. In this work, we introduce a new family of spaces of Dirichlet series, the Blochμ-spaces. We can provide, in terms of those spaces, a sufficient condition for this Volterra operator to act boundedly on the spaces Aμp. We also establish a necessary condition for a specific choice of μ. Sufficient and necessary conditions for compactness are also proven. The non-membership in Schatten classes is established, as well as a radicality result for some Bloch space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信