{"title":"Banach空间中非线性算子的映射矫顽力概念","authors":"Roland Becker , Malte Braack","doi":"10.1016/j.jfa.2025.110893","DOIUrl":null,"url":null,"abstract":"<div><div>We provide a concise proof of existence of the solutions to nonlinear operator equations in separable Banach spaces, without assuming the operator to be monotone. Instead, our main hypotheses consist of a continuity assumption and a mapped coercivity property, which is a generalization of the usual coercivity property for nonlinear operators. In the case of linear operators, we recover the traditional inf-sup condition. To illustrate the applicability of this general concept, we apply it to semi-linear elliptic problems and the Navier-Stokes equations.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 3","pages":"Article 110893"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The concept of mapped coercivity for nonlinear operators in Banach spaces\",\"authors\":\"Roland Becker , Malte Braack\",\"doi\":\"10.1016/j.jfa.2025.110893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We provide a concise proof of existence of the solutions to nonlinear operator equations in separable Banach spaces, without assuming the operator to be monotone. Instead, our main hypotheses consist of a continuity assumption and a mapped coercivity property, which is a generalization of the usual coercivity property for nonlinear operators. In the case of linear operators, we recover the traditional inf-sup condition. To illustrate the applicability of this general concept, we apply it to semi-linear elliptic problems and the Navier-Stokes equations.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 3\",\"pages\":\"Article 110893\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625000758\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000758","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The concept of mapped coercivity for nonlinear operators in Banach spaces
We provide a concise proof of existence of the solutions to nonlinear operator equations in separable Banach spaces, without assuming the operator to be monotone. Instead, our main hypotheses consist of a continuity assumption and a mapped coercivity property, which is a generalization of the usual coercivity property for nonlinear operators. In the case of linear operators, we recover the traditional inf-sup condition. To illustrate the applicability of this general concept, we apply it to semi-linear elliptic problems and the Navier-Stokes equations.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis