层数和初始点火位置对多层电缆火灾燃烧特性影响的实验研究

IF 3.4 3区 工程技术 Q2 ENGINEERING, CIVIL
Jie Chen , Shengze Qin , Xiaolong Zhao , Yunhe Tong , Minghao Fan
{"title":"层数和初始点火位置对多层电缆火灾燃烧特性影响的实验研究","authors":"Jie Chen ,&nbsp;Shengze Qin ,&nbsp;Xiaolong Zhao ,&nbsp;Yunhe Tong ,&nbsp;Minghao Fan","doi":"10.1016/j.firesaf.2025.104368","DOIUrl":null,"url":null,"abstract":"<div><div>A series of multi-layer cable fire tests were conducted to explore the effects of cable layer number and initial ignition location on the burning characteristics and propagation behavior. Characteristic parameters, such as flame morphological characteristics, flame spread behavior, temperature profile and heat release rate (HRR) were determined. Flame height and HRR was significantly increased with the increase of cable layer number. Within the current limited experimental range, maximum flame height and HRR of multi-layer cable fire scenario reached 640 cm and 1380 kW, respectively. Also, initial ignition location had obvious effect on multi-layer cable fire propagation pattern. In cable fire scenarios, flame spread exhibits upward, downward, and horizontal directions when ignition initiates at lower or upper layers. However, mid-layer ignition introduces a critical thermal melt droplet-driven propagation mechanism. Molten droplets are classified into four morphological types, and their accumulation may lead to pool-like fires. This work was performed to deepen our fundamental understanding of the combustion characteristics of large-scale multi-layer cable fires and provide some reference for related fire safety issues.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104368"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the influence of layer number and initial ignition location on burning characteristic of multi-layer cable fire\",\"authors\":\"Jie Chen ,&nbsp;Shengze Qin ,&nbsp;Xiaolong Zhao ,&nbsp;Yunhe Tong ,&nbsp;Minghao Fan\",\"doi\":\"10.1016/j.firesaf.2025.104368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A series of multi-layer cable fire tests were conducted to explore the effects of cable layer number and initial ignition location on the burning characteristics and propagation behavior. Characteristic parameters, such as flame morphological characteristics, flame spread behavior, temperature profile and heat release rate (HRR) were determined. Flame height and HRR was significantly increased with the increase of cable layer number. Within the current limited experimental range, maximum flame height and HRR of multi-layer cable fire scenario reached 640 cm and 1380 kW, respectively. Also, initial ignition location had obvious effect on multi-layer cable fire propagation pattern. In cable fire scenarios, flame spread exhibits upward, downward, and horizontal directions when ignition initiates at lower or upper layers. However, mid-layer ignition introduces a critical thermal melt droplet-driven propagation mechanism. Molten droplets are classified into four morphological types, and their accumulation may lead to pool-like fires. This work was performed to deepen our fundamental understanding of the combustion characteristics of large-scale multi-layer cable fires and provide some reference for related fire safety issues.</div></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"153 \",\"pages\":\"Article 104368\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711225000323\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

通过一系列多层电缆火灾试验,探讨了电缆层数和初始点火位置对电缆燃烧特性和传播行为的影响。测定了火焰形态特征、火焰蔓延行为、温度分布和热释放率等特征参数。火焰高度和HRR随电缆层数的增加而显著增加。在目前有限的实验范围内,多层电缆火灾场景的最大火焰高度和HRR分别达到640 cm和1380 kW。初始点火位置对多层电缆火灾传播规律也有明显影响。在电缆火灾场景中,当着火发生在较低或较高的层时,火焰蔓延呈现向上、向下和水平方向。然而,中间层点火引入了一个关键的热熔液滴驱动的传播机制。熔滴可分为四种形态类型,其积聚可导致池状火灾。本工作旨在加深我们对大型多层电缆火灾燃烧特性的基本认识,并为相关的消防安全问题提供一定的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on the influence of layer number and initial ignition location on burning characteristic of multi-layer cable fire
A series of multi-layer cable fire tests were conducted to explore the effects of cable layer number and initial ignition location on the burning characteristics and propagation behavior. Characteristic parameters, such as flame morphological characteristics, flame spread behavior, temperature profile and heat release rate (HRR) were determined. Flame height and HRR was significantly increased with the increase of cable layer number. Within the current limited experimental range, maximum flame height and HRR of multi-layer cable fire scenario reached 640 cm and 1380 kW, respectively. Also, initial ignition location had obvious effect on multi-layer cable fire propagation pattern. In cable fire scenarios, flame spread exhibits upward, downward, and horizontal directions when ignition initiates at lower or upper layers. However, mid-layer ignition introduces a critical thermal melt droplet-driven propagation mechanism. Molten droplets are classified into four morphological types, and their accumulation may lead to pool-like fires. This work was performed to deepen our fundamental understanding of the combustion characteristics of large-scale multi-layer cable fires and provide some reference for related fire safety issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire Safety Journal
Fire Safety Journal 工程技术-材料科学:综合
CiteScore
5.70
自引率
9.70%
发文量
153
审稿时长
60 days
期刊介绍: Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信