三杂化纳米流体在工业冷却系统中的应用:化学反应流和热辐射中的热泳现象研究

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Munawar Abbas , Nidhal Becheikh , Ibtehal Alazman , Ilyas Khan
{"title":"三杂化纳米流体在工业冷却系统中的应用:化学反应流和热辐射中的热泳现象研究","authors":"Munawar Abbas ,&nbsp;Nidhal Becheikh ,&nbsp;Ibtehal Alazman ,&nbsp;Ilyas Khan","doi":"10.1016/j.jrras.2025.101414","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal radiation's effects on the chemical reactive flow of MHD trihybrid nanofluid around a rotating sphere with thermophoresis and porous medium are investigated in this work. Marangoni convection and heat generation analysis are important in this investigation. The suggested model has important uses in a number of technical and industrial domains where thermophoretic particle deposition and thermal radiation are essential. Ethylene glycol-based trihybrid nanofluids improve heat transfer efficiency, making them especially helpful in aeronautical engineering for thermal management systems, nuclear reactor cooling, and electronic device cooling. The model also helps the chemical processing industries by improving combustion and catalytic reactions. Advanced energy systems, such as solar thermal collectors and hybrid energy storage devices, benefit from its understanding of heat and mass transmission mechanisms. A trihybrid nanofluid made up of iron oxide <span><math><mrow><mo>(</mo><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></math></span>, copper <span><math><mrow><mrow><mo>(</mo><mrow><mi>C</mi><mi>u</mi></mrow><mo>)</mo></mrow><mtext>,</mtext></mrow></math></span> ethylene glycol (<span><math><mrow><mrow><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow><mo>)</mo></mrow></math></span> and titanium oxide <span><math><mrow><mo>(</mo><mrow><mtext>Ti</mtext><msub><mi>O</mi><mrow><mn>2</mn><mo>,</mo></mrow></msub></mrow><mo>)</mo></mrow></math></span> as the improper liquid is used. Using the bvp4c and a shooting approach, the numerical solution of the reduced equations are determined. Graphical displays are used to demonstrate the numerical outcomes. Investigation is done on the effects of various restrictions on their respective domains. The mass transfer rate and concentration dispersion decrease when the thermophoretic particle deposition parameter and the chemical reaction parameter rise.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101414"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of trihybrid nanofluid in industrial cooling systems: An investigation of thermophoresis in chemical reactive flow and thermal radiation\",\"authors\":\"Munawar Abbas ,&nbsp;Nidhal Becheikh ,&nbsp;Ibtehal Alazman ,&nbsp;Ilyas Khan\",\"doi\":\"10.1016/j.jrras.2025.101414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal radiation's effects on the chemical reactive flow of MHD trihybrid nanofluid around a rotating sphere with thermophoresis and porous medium are investigated in this work. Marangoni convection and heat generation analysis are important in this investigation. The suggested model has important uses in a number of technical and industrial domains where thermophoretic particle deposition and thermal radiation are essential. Ethylene glycol-based trihybrid nanofluids improve heat transfer efficiency, making them especially helpful in aeronautical engineering for thermal management systems, nuclear reactor cooling, and electronic device cooling. The model also helps the chemical processing industries by improving combustion and catalytic reactions. Advanced energy systems, such as solar thermal collectors and hybrid energy storage devices, benefit from its understanding of heat and mass transmission mechanisms. A trihybrid nanofluid made up of iron oxide <span><math><mrow><mo>(</mo><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></math></span>, copper <span><math><mrow><mrow><mo>(</mo><mrow><mi>C</mi><mi>u</mi></mrow><mo>)</mo></mrow><mtext>,</mtext></mrow></math></span> ethylene glycol (<span><math><mrow><mrow><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow><mo>)</mo></mrow></math></span> and titanium oxide <span><math><mrow><mo>(</mo><mrow><mtext>Ti</mtext><msub><mi>O</mi><mrow><mn>2</mn><mo>,</mo></mrow></msub></mrow><mo>)</mo></mrow></math></span> as the improper liquid is used. Using the bvp4c and a shooting approach, the numerical solution of the reduced equations are determined. Graphical displays are used to demonstrate the numerical outcomes. Investigation is done on the effects of various restrictions on their respective domains. The mass transfer rate and concentration dispersion decrease when the thermophoretic particle deposition parameter and the chemical reaction parameter rise.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"18 2\",\"pages\":\"Article 101414\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850725001268\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725001268","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

研究了热辐射对MHD三杂化纳米流体绕热泳球和多孔介质的化学反应流动的影响。马兰戈尼对流和热生成分析在该研究中很重要。所建议的模型在热泳颗粒沉积和热辐射必不可少的许多技术和工业领域具有重要用途。乙二醇基三杂化纳米流体提高了传热效率,使其在航空工程热管理系统、核反应堆冷却和电子设备冷却方面特别有用。该模型还通过改善燃烧和催化反应来帮助化学加工工业。先进的能源系统,如太阳能集热器和混合储能装置,受益于它对热量和质量传递机制的理解。使用由氧化铁(Fe3O4)、铜(Cu)、乙二醇(C2H6O2)和氧化钛(TiO2)组成的三杂化纳米流体作为不合适的液体。利用bvp4c和射击法,确定了简化方程的数值解。图形显示用于演示数值结果。调查了各种限制对各自领域的影响。随着热泳颗粒沉积参数和化学反应参数的增大,传质速率和浓度分散减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Applications of trihybrid nanofluid in industrial cooling systems: An investigation of thermophoresis in chemical reactive flow and thermal radiation

Applications of trihybrid nanofluid in industrial cooling systems: An investigation of thermophoresis in chemical reactive flow and thermal radiation
Thermal radiation's effects on the chemical reactive flow of MHD trihybrid nanofluid around a rotating sphere with thermophoresis and porous medium are investigated in this work. Marangoni convection and heat generation analysis are important in this investigation. The suggested model has important uses in a number of technical and industrial domains where thermophoretic particle deposition and thermal radiation are essential. Ethylene glycol-based trihybrid nanofluids improve heat transfer efficiency, making them especially helpful in aeronautical engineering for thermal management systems, nuclear reactor cooling, and electronic device cooling. The model also helps the chemical processing industries by improving combustion and catalytic reactions. Advanced energy systems, such as solar thermal collectors and hybrid energy storage devices, benefit from its understanding of heat and mass transmission mechanisms. A trihybrid nanofluid made up of iron oxide (Fe3O4), copper (Cu), ethylene glycol (C2H6O2) and titanium oxide (TiO2,) as the improper liquid is used. Using the bvp4c and a shooting approach, the numerical solution of the reduced equations are determined. Graphical displays are used to demonstrate the numerical outcomes. Investigation is done on the effects of various restrictions on their respective domains. The mass transfer rate and concentration dispersion decrease when the thermophoretic particle deposition parameter and the chemical reaction parameter rise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信