Momtanu Chakraborty , Alireza Pourreza , Sirapoom Peanusaha , Parastoo Farajpoor , Sat Darshan S. Khalsa , Patrick H. Brown
{"title":"结合高光谱辐射传输建模和机器学习增强杏仁叶片氮感知","authors":"Momtanu Chakraborty , Alireza Pourreza , Sirapoom Peanusaha , Parastoo Farajpoor , Sat Darshan S. Khalsa , Patrick H. Brown","doi":"10.1016/j.compag.2025.110195","DOIUrl":null,"url":null,"abstract":"<div><div>Precisely quantifying crop nitrogen content is critical for adopting sustainable nutrient management practices. This study offers a comprehensive analysis of using hyperspectral data to accurately measure area-based nitrogen content (N) in almond trees at the leaf level. We collected spectral data ranging from 400 to 2500 nm of multiple leaves from 190 samples across two orchards spanning two years. Our methodology involves building a hybrid model that merges a physically based model (PROSPECT-PRO) and a data-driven model (multi-output Gaussian process regression), demonstrating exceptional performance in area-based nitrogen prediction, achieving R<sup>2</sup> values of 0.54 and an RMSE of 0.03 mg/cm<sup>2</sup> for area-based nitrogen sensing. The hybrid method incorporates synthetic spectra produced through principal component analysis (PCA) and labeled with biochemical traits retrieved by PROSPECT-PRO for training and validation, while the real data was kept unseen for testing. We compared the performance of physically based, hybrid, and data-driven models using R<sup>2</sup> and NRMSE as metrics. The Partial Least Squares Regression (PLSR) model showed a strong relationship between leaf N and spectral reflectance (R<sup>2</sup> = 0.75); however, PLSR is prone to bias from the training set and may perform poorly on unseen data. The findings also highlight the importance of the Short-Wave Infrared region<!--> <!-->in nitrogen determination, particularly the bands from 2100 to 2200 nm. Additionally, protein content was found to be a more reliable proxy for nitrogen than chlorophyll. By comparing the retrieved leaf traits with ground truth data, we realized that PROSPECT PRO consistently underestimates almond leaf traits such equivalent water thickness (EWT), carbon-based compounds (CBC), and overestimates Nitrogen. Therefore, adjustment factors were determined for these traits that are estimated with PROSPECT-PRO.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110195"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating hyperspectral radiative transfer modeling and Machine learning for enhanced nitrogen sensing in almond leaves\",\"authors\":\"Momtanu Chakraborty , Alireza Pourreza , Sirapoom Peanusaha , Parastoo Farajpoor , Sat Darshan S. Khalsa , Patrick H. Brown\",\"doi\":\"10.1016/j.compag.2025.110195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precisely quantifying crop nitrogen content is critical for adopting sustainable nutrient management practices. This study offers a comprehensive analysis of using hyperspectral data to accurately measure area-based nitrogen content (N) in almond trees at the leaf level. We collected spectral data ranging from 400 to 2500 nm of multiple leaves from 190 samples across two orchards spanning two years. Our methodology involves building a hybrid model that merges a physically based model (PROSPECT-PRO) and a data-driven model (multi-output Gaussian process regression), demonstrating exceptional performance in area-based nitrogen prediction, achieving R<sup>2</sup> values of 0.54 and an RMSE of 0.03 mg/cm<sup>2</sup> for area-based nitrogen sensing. The hybrid method incorporates synthetic spectra produced through principal component analysis (PCA) and labeled with biochemical traits retrieved by PROSPECT-PRO for training and validation, while the real data was kept unseen for testing. We compared the performance of physically based, hybrid, and data-driven models using R<sup>2</sup> and NRMSE as metrics. The Partial Least Squares Regression (PLSR) model showed a strong relationship between leaf N and spectral reflectance (R<sup>2</sup> = 0.75); however, PLSR is prone to bias from the training set and may perform poorly on unseen data. The findings also highlight the importance of the Short-Wave Infrared region<!--> <!-->in nitrogen determination, particularly the bands from 2100 to 2200 nm. Additionally, protein content was found to be a more reliable proxy for nitrogen than chlorophyll. By comparing the retrieved leaf traits with ground truth data, we realized that PROSPECT PRO consistently underestimates almond leaf traits such equivalent water thickness (EWT), carbon-based compounds (CBC), and overestimates Nitrogen. Therefore, adjustment factors were determined for these traits that are estimated with PROSPECT-PRO.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"234 \",\"pages\":\"Article 110195\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169925003011\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003011","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating hyperspectral radiative transfer modeling and Machine learning for enhanced nitrogen sensing in almond leaves
Precisely quantifying crop nitrogen content is critical for adopting sustainable nutrient management practices. This study offers a comprehensive analysis of using hyperspectral data to accurately measure area-based nitrogen content (N) in almond trees at the leaf level. We collected spectral data ranging from 400 to 2500 nm of multiple leaves from 190 samples across two orchards spanning two years. Our methodology involves building a hybrid model that merges a physically based model (PROSPECT-PRO) and a data-driven model (multi-output Gaussian process regression), demonstrating exceptional performance in area-based nitrogen prediction, achieving R2 values of 0.54 and an RMSE of 0.03 mg/cm2 for area-based nitrogen sensing. The hybrid method incorporates synthetic spectra produced through principal component analysis (PCA) and labeled with biochemical traits retrieved by PROSPECT-PRO for training and validation, while the real data was kept unseen for testing. We compared the performance of physically based, hybrid, and data-driven models using R2 and NRMSE as metrics. The Partial Least Squares Regression (PLSR) model showed a strong relationship between leaf N and spectral reflectance (R2 = 0.75); however, PLSR is prone to bias from the training set and may perform poorly on unseen data. The findings also highlight the importance of the Short-Wave Infrared region in nitrogen determination, particularly the bands from 2100 to 2200 nm. Additionally, protein content was found to be a more reliable proxy for nitrogen than chlorophyll. By comparing the retrieved leaf traits with ground truth data, we realized that PROSPECT PRO consistently underestimates almond leaf traits such equivalent water thickness (EWT), carbon-based compounds (CBC), and overestimates Nitrogen. Therefore, adjustment factors were determined for these traits that are estimated with PROSPECT-PRO.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.