阿贝尔范畴图上的表示I:整体结构与同调对象

IF 0.8 2区 数学 Q2 MATHEMATICS
Zhenxing Di , Liping Li , Li Liang , Nina Yu
{"title":"阿贝尔范畴图上的表示I:整体结构与同调对象","authors":"Zhenxing Di ,&nbsp;Liping Li ,&nbsp;Li Liang ,&nbsp;Nina Yu","doi":"10.1016/j.jalgebra.2025.01.033","DOIUrl":null,"url":null,"abstract":"<div><div>Representations over diagrams of abelian categories unify quite a few notions appearing widely in literature such as representations of categories, presheaves of modules over categories, representations of species, etc. In this series of papers we study them systematically, characterizing special homological objects in representation category and constructing various structures (such as model structures) on it. In the first paper we investigate the Grothendieck structure of the representation category, describe important functors and adjunction relations between them, and characterize special homological objects. These results lay a foundation for our future works.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"672 ","pages":"Pages 208-246"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations over diagrams of abelian categories I: Global structure and homological objects\",\"authors\":\"Zhenxing Di ,&nbsp;Liping Li ,&nbsp;Li Liang ,&nbsp;Nina Yu\",\"doi\":\"10.1016/j.jalgebra.2025.01.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Representations over diagrams of abelian categories unify quite a few notions appearing widely in literature such as representations of categories, presheaves of modules over categories, representations of species, etc. In this series of papers we study them systematically, characterizing special homological objects in representation category and constructing various structures (such as model structures) on it. In the first paper we investigate the Grothendieck structure of the representation category, describe important functors and adjunction relations between them, and characterize special homological objects. These results lay a foundation for our future works.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"672 \",\"pages\":\"Pages 208-246\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325000882\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325000882","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

阿贝尔范畴图表示法统一了文献中广泛出现的一些概念,如范畴表示法、范畴上模的前置式、种的表示法等。在本系列论文中,我们系统地研究了它们,在表示范畴中刻画了特殊的同构对象,并在其上构造了各种结构(如模型结构)。在第一篇论文中,我们研究了表示范畴的Grothendieck结构,描述了重要的函子和它们之间的附加关系,并刻画了特殊的同调对象。这些结果为我们今后的工作奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations over diagrams of abelian categories I: Global structure and homological objects
Representations over diagrams of abelian categories unify quite a few notions appearing widely in literature such as representations of categories, presheaves of modules over categories, representations of species, etc. In this series of papers we study them systematically, characterizing special homological objects in representation category and constructing various structures (such as model structures) on it. In the first paper we investigate the Grothendieck structure of the representation category, describe important functors and adjunction relations between them, and characterize special homological objects. These results lay a foundation for our future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信