miRNA-mRNA的整合分析揭示了赭曲霉毒素a诱导肝毒性的机制

IF 6.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhiqiang Luo , Ruyi Jin , Fulu Pan , Ruofan Guo , Mengyu Li , Shuo Zhang , Jiaru Shi , Jingqi Zheng , Huijie Wang , Xinyu Yang , Jian Yang , Guohua Yu
{"title":"miRNA-mRNA的整合分析揭示了赭曲霉毒素a诱导肝毒性的机制","authors":"Zhiqiang Luo ,&nbsp;Ruyi Jin ,&nbsp;Fulu Pan ,&nbsp;Ruofan Guo ,&nbsp;Mengyu Li ,&nbsp;Shuo Zhang ,&nbsp;Jiaru Shi ,&nbsp;Jingqi Zheng ,&nbsp;Huijie Wang ,&nbsp;Xinyu Yang ,&nbsp;Jian Yang ,&nbsp;Guohua Yu","doi":"10.1016/j.ecoenv.2025.118039","DOIUrl":null,"url":null,"abstract":"<div><div>Ochratoxin A (OTA), the most toxic member of the ochratoxin family, is frequently detected in contaminated food and beverages, posing substantial health risks to both humans and animals, particularly due to its hepatotoxic effects. Although OTA is known to cause liver damage, the precise molecular mechanisms driving its toxicity remain poorly understood. In this study, we explored the hepatotoxic effects of OTA using LO2 cells and zebrafish models, combining miRNA and mRNA analyses to uncover the underlying mechanisms. Our results demonstrated that OTA significantly suppressed cell proliferation and viability, induced cell cycle arrest, triggered apoptosis and elevated reactive oxygen species (ROS) production in LO2 cells, with analogous apoptotic effects observed in zebrafish larvae. Additionally, miRNA-mRNA analysis revealed that differentially expressed genes (DEGs) and miRNAs (DEMs) were significantly enriched in pathways related to apoptosis, cell cycle regulation, and MAPK signaling. We constructed a potential regulatory network, identifying three key miRNAs (hsa-miR-3065–5p, hsa-miR-520g-3p, and hsa-miR-5698) and three associated hub mRNAs (CACNA1D, CDC6, and E2F1). Moreover, OTA treatment specifically induced p38 phosphorylation without significantly altering the phosphorylation levels of ERK or JNK. Collectively, this study established a comprehensive framework for understanding the hepatotoxic mechanisms of OTA at the miRNA and mRNA levels, providing critical insights into the pathogenesis of hepatotoxicity induced by ochratoxins and contributing to the prevention and management of related diseases.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"293 ","pages":"Article 118039"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration analysis of miRNA-mRNA uncovers the mechanisms of ochratoxin A-induced hepatotoxicity\",\"authors\":\"Zhiqiang Luo ,&nbsp;Ruyi Jin ,&nbsp;Fulu Pan ,&nbsp;Ruofan Guo ,&nbsp;Mengyu Li ,&nbsp;Shuo Zhang ,&nbsp;Jiaru Shi ,&nbsp;Jingqi Zheng ,&nbsp;Huijie Wang ,&nbsp;Xinyu Yang ,&nbsp;Jian Yang ,&nbsp;Guohua Yu\",\"doi\":\"10.1016/j.ecoenv.2025.118039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ochratoxin A (OTA), the most toxic member of the ochratoxin family, is frequently detected in contaminated food and beverages, posing substantial health risks to both humans and animals, particularly due to its hepatotoxic effects. Although OTA is known to cause liver damage, the precise molecular mechanisms driving its toxicity remain poorly understood. In this study, we explored the hepatotoxic effects of OTA using LO2 cells and zebrafish models, combining miRNA and mRNA analyses to uncover the underlying mechanisms. Our results demonstrated that OTA significantly suppressed cell proliferation and viability, induced cell cycle arrest, triggered apoptosis and elevated reactive oxygen species (ROS) production in LO2 cells, with analogous apoptotic effects observed in zebrafish larvae. Additionally, miRNA-mRNA analysis revealed that differentially expressed genes (DEGs) and miRNAs (DEMs) were significantly enriched in pathways related to apoptosis, cell cycle regulation, and MAPK signaling. We constructed a potential regulatory network, identifying three key miRNAs (hsa-miR-3065–5p, hsa-miR-520g-3p, and hsa-miR-5698) and three associated hub mRNAs (CACNA1D, CDC6, and E2F1). Moreover, OTA treatment specifically induced p38 phosphorylation without significantly altering the phosphorylation levels of ERK or JNK. Collectively, this study established a comprehensive framework for understanding the hepatotoxic mechanisms of OTA at the miRNA and mRNA levels, providing critical insights into the pathogenesis of hepatotoxicity induced by ochratoxins and contributing to the prevention and management of related diseases.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"293 \",\"pages\":\"Article 118039\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651325003756\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325003756","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

赭曲霉毒素A (OTA)是赭曲霉毒素家族中毒性最大的成员,经常在受污染的食品和饮料中检测到,对人类和动物的健康构成重大风险,特别是由于其肝毒性作用。虽然已知OTA会导致肝损伤,但驱动其毒性的确切分子机制仍然知之甚少。在本研究中,我们利用LO2细胞和斑马鱼模型探讨了OTA的肝毒性作用,并结合miRNA和mRNA分析来揭示其潜在机制。我们的研究结果表明,OTA显著抑制LO2细胞的增殖和活力,诱导细胞周期阻滞,引发细胞凋亡和活性氧(ROS)的产生,在斑马鱼幼虫中也观察到类似的凋亡作用。此外,miRNA-mRNA分析显示,差异表达基因(DEGs)和mirna (dem)在凋亡、细胞周期调节和MAPK信号通路中显著富集。我们构建了一个潜在的调控网络,确定了三个关键mirna (hsa-miR-3065-5p, hsa-miR-520g-3p和hsa-miR-5698)和三个相关的枢纽mrna (CACNA1D, CDC6和E2F1)。此外,OTA治疗特异性诱导p38磷酸化,而不会显著改变ERK或JNK的磷酸化水平。总的来说,本研究建立了一个全面的框架,从miRNA和mRNA水平了解OTA的肝毒性机制,为赭曲霉毒素引起的肝毒性的发病机制提供了重要的见解,并有助于相关疾病的预防和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration analysis of miRNA-mRNA uncovers the mechanisms of ochratoxin A-induced hepatotoxicity
Ochratoxin A (OTA), the most toxic member of the ochratoxin family, is frequently detected in contaminated food and beverages, posing substantial health risks to both humans and animals, particularly due to its hepatotoxic effects. Although OTA is known to cause liver damage, the precise molecular mechanisms driving its toxicity remain poorly understood. In this study, we explored the hepatotoxic effects of OTA using LO2 cells and zebrafish models, combining miRNA and mRNA analyses to uncover the underlying mechanisms. Our results demonstrated that OTA significantly suppressed cell proliferation and viability, induced cell cycle arrest, triggered apoptosis and elevated reactive oxygen species (ROS) production in LO2 cells, with analogous apoptotic effects observed in zebrafish larvae. Additionally, miRNA-mRNA analysis revealed that differentially expressed genes (DEGs) and miRNAs (DEMs) were significantly enriched in pathways related to apoptosis, cell cycle regulation, and MAPK signaling. We constructed a potential regulatory network, identifying three key miRNAs (hsa-miR-3065–5p, hsa-miR-520g-3p, and hsa-miR-5698) and three associated hub mRNAs (CACNA1D, CDC6, and E2F1). Moreover, OTA treatment specifically induced p38 phosphorylation without significantly altering the phosphorylation levels of ERK or JNK. Collectively, this study established a comprehensive framework for understanding the hepatotoxic mechanisms of OTA at the miRNA and mRNA levels, providing critical insights into the pathogenesis of hepatotoxicity induced by ochratoxins and contributing to the prevention and management of related diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信