ENSO对泰国雨养水稻产量影响的量化与预测

Q2 Environmental Science
Usa Humphries Wannasingha , Muhammad Waqas , Shakeel Ahmad , Angkool Wangwongchai , Porntip Dechpichai
{"title":"ENSO对泰国雨养水稻产量影响的量化与预测","authors":"Usa Humphries Wannasingha ,&nbsp;Muhammad Waqas ,&nbsp;Shakeel Ahmad ,&nbsp;Angkool Wangwongchai ,&nbsp;Porntip Dechpichai","doi":"10.1016/j.envc.2025.101123","DOIUrl":null,"url":null,"abstract":"<div><div>Climate variability driven by the El Niño-Southern Oscillation (ENSO) significantly impacts rainfed rice yields in Thailand, a critical agricultural region heavily reliant on monsoon rainfall. This study quantifies and predicts the effects of ENSO-induced climate signals on rice yields using advanced artificial intelligence (AI) techniques. We employed a three-stage methodology, integrating Multiple Linear Regression (MLR) with Variance Inflation Factor (VIF) analysis to assess the relative contributions of ENSO indices and local climate variables, followed by the development of two AI models: ENSO<img>CropNet, a deep neural network (DNN), and an ensemble Random Forest-XGBoost (RF-XGBoost) model. The results revealed that ENSO indices, particularly NINO3 and NINO3.4, significantly reduced rice yields in several provinces, with temperature and rainfall variability playing critical roles. The ENSO<img>CropNet model demonstrated high predictive accuracy (R² = 0.89, MAE = 1.04, RMSE = 1.45), surpassing the RF-XGBoost model (R² = 0.82, MAE = 3.62, RMSE = 3.84). Feature importance analysis identified rainfall, minimum temperature, and ENSO indices as key predictors. The study found that ENSO-driven climate variability led to a 12 % decline in rice yields across northern provinces. The findings underscore the significant role of ENSO-induced climate variability in rainfed rice production, with AI models such as ENSO<img>CropNet offering highly accurate predictions. These results highlight the potential of AI techniques to enhance agricultural forecasting and resilience in climate-vulnerable regions like Thailand.</div></div>","PeriodicalId":34794,"journal":{"name":"Environmental Challenges","volume":"19 ","pages":"Article 101123"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification and prediction of the impact of ENSO on rainfed rice yields in Thailand\",\"authors\":\"Usa Humphries Wannasingha ,&nbsp;Muhammad Waqas ,&nbsp;Shakeel Ahmad ,&nbsp;Angkool Wangwongchai ,&nbsp;Porntip Dechpichai\",\"doi\":\"10.1016/j.envc.2025.101123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate variability driven by the El Niño-Southern Oscillation (ENSO) significantly impacts rainfed rice yields in Thailand, a critical agricultural region heavily reliant on monsoon rainfall. This study quantifies and predicts the effects of ENSO-induced climate signals on rice yields using advanced artificial intelligence (AI) techniques. We employed a three-stage methodology, integrating Multiple Linear Regression (MLR) with Variance Inflation Factor (VIF) analysis to assess the relative contributions of ENSO indices and local climate variables, followed by the development of two AI models: ENSO<img>CropNet, a deep neural network (DNN), and an ensemble Random Forest-XGBoost (RF-XGBoost) model. The results revealed that ENSO indices, particularly NINO3 and NINO3.4, significantly reduced rice yields in several provinces, with temperature and rainfall variability playing critical roles. The ENSO<img>CropNet model demonstrated high predictive accuracy (R² = 0.89, MAE = 1.04, RMSE = 1.45), surpassing the RF-XGBoost model (R² = 0.82, MAE = 3.62, RMSE = 3.84). Feature importance analysis identified rainfall, minimum temperature, and ENSO indices as key predictors. The study found that ENSO-driven climate variability led to a 12 % decline in rice yields across northern provinces. The findings underscore the significant role of ENSO-induced climate variability in rainfed rice production, with AI models such as ENSO<img>CropNet offering highly accurate predictions. These results highlight the potential of AI techniques to enhance agricultural forecasting and resilience in climate-vulnerable regions like Thailand.</div></div>\",\"PeriodicalId\":34794,\"journal\":{\"name\":\"Environmental Challenges\",\"volume\":\"19 \",\"pages\":\"Article 101123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Challenges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667010025000435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Challenges","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667010025000435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

由厄尔尼诺Niño-Southern涛动(ENSO)驱动的气候变率显著影响泰国的雨养水稻产量,泰国是一个严重依赖季风降雨的关键农业地区。本研究利用先进的人工智能(AI)技术量化和预测enso诱导的气候信号对水稻产量的影响。采用多元线性回归(MLR)和方差膨胀因子(VIF)分析相结合的三阶段方法来评估ENSO指数和当地气候变量的相对贡献,随后开发了两个人工智能模型:ENSOCropNet、深度神经网络(DNN)和集成随机森林- xgboost (RF-XGBoost)模型。结果表明,ENSO指数,尤其是NINO3和NINO3.4指数显著降低了部分省份的水稻产量,其中温度和降雨变率起关键作用。ENSOCropNet模型具有较高的预测精度(R²= 0.89,MAE = 1.04, RMSE = 1.45),优于RF-XGBoost模型(R²= 0.82,MAE = 3.62, RMSE = 3.84)。特征重要性分析确定降雨、最低温度和ENSO指数为关键预测因子。该研究发现,enso驱动的气候变化导致北方各省的水稻产量下降了12%。这些发现强调了enso引起的气候变异在雨养水稻生产中的重要作用,ENSOCropNet等人工智能模型提供了高度准确的预测。这些结果突出了人工智能技术在泰国等气候脆弱地区加强农业预测和抵御能力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification and prediction of the impact of ENSO on rainfed rice yields in Thailand
Climate variability driven by the El Niño-Southern Oscillation (ENSO) significantly impacts rainfed rice yields in Thailand, a critical agricultural region heavily reliant on monsoon rainfall. This study quantifies and predicts the effects of ENSO-induced climate signals on rice yields using advanced artificial intelligence (AI) techniques. We employed a three-stage methodology, integrating Multiple Linear Regression (MLR) with Variance Inflation Factor (VIF) analysis to assess the relative contributions of ENSO indices and local climate variables, followed by the development of two AI models: ENSOCropNet, a deep neural network (DNN), and an ensemble Random Forest-XGBoost (RF-XGBoost) model. The results revealed that ENSO indices, particularly NINO3 and NINO3.4, significantly reduced rice yields in several provinces, with temperature and rainfall variability playing critical roles. The ENSOCropNet model demonstrated high predictive accuracy (R² = 0.89, MAE = 1.04, RMSE = 1.45), surpassing the RF-XGBoost model (R² = 0.82, MAE = 3.62, RMSE = 3.84). Feature importance analysis identified rainfall, minimum temperature, and ENSO indices as key predictors. The study found that ENSO-driven climate variability led to a 12 % decline in rice yields across northern provinces. The findings underscore the significant role of ENSO-induced climate variability in rainfed rice production, with AI models such as ENSOCropNet offering highly accurate predictions. These results highlight the potential of AI techniques to enhance agricultural forecasting and resilience in climate-vulnerable regions like Thailand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Challenges
Environmental Challenges Environmental Science-Environmental Engineering
CiteScore
8.00
自引率
0.00%
发文量
249
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信