{"title":"长碳纤维提高了干法锂离子电池电极的性能","authors":"Junbin Choi , Georgios Polyzos , H.E. Humphrey , Michael Toomey , Nihal Kanbargi , Amit Naskar , Ilias Belharouak , Jaswinder Sharma","doi":"10.1016/j.jpowsour.2025.236603","DOIUrl":null,"url":null,"abstract":"<div><div>Dry processing (DP) is an advanced manufacturing technique for lithium-ion battery (LIB) electrodes. Unlike conventional wet-process-based manufacturing that involves dissolving polyvinylidene fluoride (PVDF) binder in n-methyl-2-pyrrolidone (NMP) solvent for slurry-casting, DP involves fibrillation of polymer binders. This method offers environmental and cost benefits by eliminating the need for expensive and environmentally hazardous organic solvents. However, DP-produced electrode films often lack mechanical stability due to the absence of a current collector substrate during electrode material layer fabrication. This reduced mechanical instability results in difficulty during fabricating of thin electrodes (≈5 mAh/cm<sup>2</sup>). To address this issue, long (>8 mm) carbon fiber (CF) has been incorporated to reinforce the mechanical strength of the electrode films. The study demonstrates that the inclusion of long carbon fiber boosts the mechanical, electrical, thermal, and electrochemical performance of DP electrodes.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"640 ","pages":"Article 236603"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long carbon fibers boost performance of dry processed Li-ion battery electrodes\",\"authors\":\"Junbin Choi , Georgios Polyzos , H.E. Humphrey , Michael Toomey , Nihal Kanbargi , Amit Naskar , Ilias Belharouak , Jaswinder Sharma\",\"doi\":\"10.1016/j.jpowsour.2025.236603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dry processing (DP) is an advanced manufacturing technique for lithium-ion battery (LIB) electrodes. Unlike conventional wet-process-based manufacturing that involves dissolving polyvinylidene fluoride (PVDF) binder in n-methyl-2-pyrrolidone (NMP) solvent for slurry-casting, DP involves fibrillation of polymer binders. This method offers environmental and cost benefits by eliminating the need for expensive and environmentally hazardous organic solvents. However, DP-produced electrode films often lack mechanical stability due to the absence of a current collector substrate during electrode material layer fabrication. This reduced mechanical instability results in difficulty during fabricating of thin electrodes (≈5 mAh/cm<sup>2</sup>). To address this issue, long (>8 mm) carbon fiber (CF) has been incorporated to reinforce the mechanical strength of the electrode films. The study demonstrates that the inclusion of long carbon fiber boosts the mechanical, electrical, thermal, and electrochemical performance of DP electrodes.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"640 \",\"pages\":\"Article 236603\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325004392\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325004392","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Long carbon fibers boost performance of dry processed Li-ion battery electrodes
Dry processing (DP) is an advanced manufacturing technique for lithium-ion battery (LIB) electrodes. Unlike conventional wet-process-based manufacturing that involves dissolving polyvinylidene fluoride (PVDF) binder in n-methyl-2-pyrrolidone (NMP) solvent for slurry-casting, DP involves fibrillation of polymer binders. This method offers environmental and cost benefits by eliminating the need for expensive and environmentally hazardous organic solvents. However, DP-produced electrode films often lack mechanical stability due to the absence of a current collector substrate during electrode material layer fabrication. This reduced mechanical instability results in difficulty during fabricating of thin electrodes (≈5 mAh/cm2). To address this issue, long (>8 mm) carbon fiber (CF) has been incorporated to reinforce the mechanical strength of the electrode films. The study demonstrates that the inclusion of long carbon fiber boosts the mechanical, electrical, thermal, and electrochemical performance of DP electrodes.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems