改善疏水性的钢转轮表面改性,以降低冰的摩擦系数

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Yujin Jeon, Sumit Barthwal, Jae-Kang Kim, Si-Hyung Lim
{"title":"改善疏水性的钢转轮表面改性,以降低冰的摩擦系数","authors":"Yujin Jeon, Sumit Barthwal, Jae-Kang Kim, Si-Hyung Lim","doi":"10.26599/frict.2025.9441021","DOIUrl":null,"url":null,"abstract":"<p>The advancement of equipment technology is very important for winter sports competitions, but there has been a lack of research on ice friction via the modification of runner surface. In this study, we modify the surfaces of steel runners that are commonly used in winter sports to reduce ice friction by improving water repellency. A custom-built tribotester that can measure ice friction under high-speed conditions was developed. Three surface treatment processes—vapor deposition, immersion, and spraying—are applied to the steel surface to improve its hydrophobicity. The results confirm that surface treatment techniques for large areas can effectively reduce the coefficient of friction between the steel runner and ice, which is strongly related to the water contact angle of the steel runner. This highlights the effect of surface wettability on the coefficient of friction between metal surfaces and ice. The developed surface treatment methods can be applied to runner surfaces that are used in various winter sports.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"55 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface modification of steel runner with improved hydrophobicity for reducing the coefficient of friction for ice\",\"authors\":\"Yujin Jeon, Sumit Barthwal, Jae-Kang Kim, Si-Hyung Lim\",\"doi\":\"10.26599/frict.2025.9441021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The advancement of equipment technology is very important for winter sports competitions, but there has been a lack of research on ice friction via the modification of runner surface. In this study, we modify the surfaces of steel runners that are commonly used in winter sports to reduce ice friction by improving water repellency. A custom-built tribotester that can measure ice friction under high-speed conditions was developed. Three surface treatment processes—vapor deposition, immersion, and spraying—are applied to the steel surface to improve its hydrophobicity. The results confirm that surface treatment techniques for large areas can effectively reduce the coefficient of friction between the steel runner and ice, which is strongly related to the water contact angle of the steel runner. This highlights the effect of surface wettability on the coefficient of friction between metal surfaces and ice. The developed surface treatment methods can be applied to runner surfaces that are used in various winter sports.</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26599/frict.2025.9441021\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441021","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

装备技术的进步对冬季运动比赛非常重要,但通过对跑者表面的改造对冰上摩擦力的研究一直缺乏。在这项研究中,我们对冬季运动中常用的钢制跑步机的表面进行了改性,通过提高防水性能来减少冰面摩擦。开发了一种定制的摩擦测试仪,可以测量高速条件下的冰摩擦。采用气相沉积、浸泡和喷涂三种表面处理工艺对钢表面进行处理,以提高其疏水性。结果证实,大面积表面处理技术可以有效降低钢流道与冰的摩擦系数,而摩擦系数与钢流道的水接触角密切相关。这突出了表面润湿性对金属表面与冰之间摩擦系数的影响。所开发的表面处理方法可以应用于各种冬季运动中使用的跑步者表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface modification of steel runner with improved hydrophobicity for reducing the coefficient of friction for ice

Surface modification of steel runner with improved hydrophobicity for reducing the coefficient of friction for ice

The advancement of equipment technology is very important for winter sports competitions, but there has been a lack of research on ice friction via the modification of runner surface. In this study, we modify the surfaces of steel runners that are commonly used in winter sports to reduce ice friction by improving water repellency. A custom-built tribotester that can measure ice friction under high-speed conditions was developed. Three surface treatment processes—vapor deposition, immersion, and spraying—are applied to the steel surface to improve its hydrophobicity. The results confirm that surface treatment techniques for large areas can effectively reduce the coefficient of friction between the steel runner and ice, which is strongly related to the water contact angle of the steel runner. This highlights the effect of surface wettability on the coefficient of friction between metal surfaces and ice. The developed surface treatment methods can be applied to runner surfaces that are used in various winter sports.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信