基于cnn的状态相关模型误差修正改善气候偏差和变率

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
William E. Chapman, Judith Berner
{"title":"基于cnn的状态相关模型误差修正改善气候偏差和变率","authors":"William E. Chapman,&nbsp;Judith Berner","doi":"10.1029/2024GL114106","DOIUrl":null,"url":null,"abstract":"<p>We develop an approach to correct biases in the atmospheric component of the Community Earth System Model using convolutional neural networks (CNNs) to create a corrective model parameterization for online bias reduction. By predicting systematic nudging increments derived from nudging toward the ERA5-reanalysis, our method dynamically adjusts the model state, outperforming traditional corrections based on climatological increments alone. Our results show significant root mean squared error improvements across all state variables, with land precipitation biases reduced by 25%–35%, seasonally dependent. Notably, we observe an improvement to the Madden-Julian Oscillation (MJO), where the CNN-corrected model successfully propagates the MJO across the maritime continent, a challenge for many current climate models. This advancement underscores the potential of using CNNs for real-time model correction, providing a robust framework for improving climate simulations. This advancement highlights the potential of CNNs for real-time model correction, improving climate simulations and bridging observed and simulated dynamics.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 6","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114106","citationCount":"0","resultStr":"{\"title\":\"Improving Climate Bias and Variability via CNN-Based State-Dependent Model-Error Corrections\",\"authors\":\"William E. Chapman,&nbsp;Judith Berner\",\"doi\":\"10.1029/2024GL114106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop an approach to correct biases in the atmospheric component of the Community Earth System Model using convolutional neural networks (CNNs) to create a corrective model parameterization for online bias reduction. By predicting systematic nudging increments derived from nudging toward the ERA5-reanalysis, our method dynamically adjusts the model state, outperforming traditional corrections based on climatological increments alone. Our results show significant root mean squared error improvements across all state variables, with land precipitation biases reduced by 25%–35%, seasonally dependent. Notably, we observe an improvement to the Madden-Julian Oscillation (MJO), where the CNN-corrected model successfully propagates the MJO across the maritime continent, a challenge for many current climate models. This advancement underscores the potential of using CNNs for real-time model correction, providing a robust framework for improving climate simulations. This advancement highlights the potential of CNNs for real-time model correction, improving climate simulations and bridging observed and simulated dynamics.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 6\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114106\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL114106","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种方法来纠正社区地球系统模型的大气成分偏差,使用卷积神经网络(cnn)来创建一个校正模型参数化,以在线减少偏差。通过预测从era5再分析中得到的系统轻推增量,我们的方法动态调整模型状态,优于传统的仅基于气候增量的修正。我们的结果显示,所有状态变量的均方根误差都有显著改善,陆地降水偏差减少了25%-35%,与季节有关。值得注意的是,我们观察到对Madden-Julian涛动(MJO)的改进,其中cnn校正的模式成功地将MJO传播到整个海洋大陆,这对许多当前气候模式来说是一个挑战。这一进展强调了使用cnn进行实时模型校正的潜力,为改善气候模拟提供了一个强大的框架。这一进展突出了cnn在实时模型校正、改善气候模拟和连接观测和模拟动力学方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving Climate Bias and Variability via CNN-Based State-Dependent Model-Error Corrections

Improving Climate Bias and Variability via CNN-Based State-Dependent Model-Error Corrections

We develop an approach to correct biases in the atmospheric component of the Community Earth System Model using convolutional neural networks (CNNs) to create a corrective model parameterization for online bias reduction. By predicting systematic nudging increments derived from nudging toward the ERA5-reanalysis, our method dynamically adjusts the model state, outperforming traditional corrections based on climatological increments alone. Our results show significant root mean squared error improvements across all state variables, with land precipitation biases reduced by 25%–35%, seasonally dependent. Notably, we observe an improvement to the Madden-Julian Oscillation (MJO), where the CNN-corrected model successfully propagates the MJO across the maritime continent, a challenge for many current climate models. This advancement underscores the potential of using CNNs for real-time model correction, providing a robust framework for improving climate simulations. This advancement highlights the potential of CNNs for real-time model correction, improving climate simulations and bridging observed and simulated dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信