利用大量机会性收集的数据集研究空间和时间中的物种群落

IF 7.9 1区 环境科学与生态学 Q1 ECOLOGY
Ecology Letters Pub Date : 2025-03-14 DOI:10.1111/ele.70094
Maxime Fajgenblat, Robby Wijns, Geert De Knijf, Robby Stoks, Pieter Lemmens, Marc Herremans, Pieter Vanormelingen, Thomas Neyens, Luc De Meester
{"title":"利用大量机会性收集的数据集研究空间和时间中的物种群落","authors":"Maxime Fajgenblat,&nbsp;Robby Wijns,&nbsp;Geert De Knijf,&nbsp;Robby Stoks,&nbsp;Pieter Lemmens,&nbsp;Marc Herremans,&nbsp;Pieter Vanormelingen,&nbsp;Thomas Neyens,&nbsp;Luc De Meester","doi":"10.1111/ele.70094","DOIUrl":null,"url":null,"abstract":"<p>Online portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and resolution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint species distribution model within a flexible site-occupancy framework. Our model addresses variable detection probabilities across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer-specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, encompassing over 100,000 waterbody visits in Flanders (N-Belgium), to show that the model provides insights into biological communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co-distributional patterns in community composition.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 3","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70094","citationCount":"0","resultStr":"{\"title\":\"Leveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time\",\"authors\":\"Maxime Fajgenblat,&nbsp;Robby Wijns,&nbsp;Geert De Knijf,&nbsp;Robby Stoks,&nbsp;Pieter Lemmens,&nbsp;Marc Herremans,&nbsp;Pieter Vanormelingen,&nbsp;Thomas Neyens,&nbsp;Luc De Meester\",\"doi\":\"10.1111/ele.70094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and resolution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint species distribution model within a flexible site-occupancy framework. Our model addresses variable detection probabilities across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer-specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, encompassing over 100,000 waterbody visits in Flanders (N-Belgium), to show that the model provides insights into biological communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co-distributional patterns in community composition.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 3\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70094\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70094\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70094","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在线门户网站为自然学家收集广泛的生物多样性数据提供了便利,在空间和时间上提供了前所未有的覆盖范围和分辨率。尽管是最广泛可用的生物多样性数据类别,但机会主义收集的记录在很大程度上仍然无法被社区生态学家获取,因为不完善和高度异质的检测过程可能严重影响推断。我们提出了一种新的统计方法,通过在灵活的场地占用框架内嵌入时空联合物种分布模型来利用这些数据集。我们的模型通过模拟物候模式和扩展潜在变量的使用来表征观察者特定的检测和报告行为,解决了访问和物种之间的可变检测概率。我们将我们的模型应用于一个偶然收集的数据集,其中包括法兰德斯(比利时北部)超过10万个水体访问,以表明该模型提供了对生物群落的高分辨率见解,包括物候,年际趋势,环境关联和群落组成的时空共分布模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time

Leveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time

Leveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time

Online portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and resolution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint species distribution model within a flexible site-occupancy framework. Our model addresses variable detection probabilities across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer-specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, encompassing over 100,000 waterbody visits in Flanders (N-Belgium), to show that the model provides insights into biological communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co-distributional patterns in community composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信