4.6 V高压全固态锂电池中LiCoO2与双层电解质多元素掺杂的结合

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Guozhong Lu, Jiaxing Lv, Xiang Wu, Ying Jiang, Ming Shen, Bingwen Hu
{"title":"4.6 V高压全固态锂电池中LiCoO2与双层电解质多元素掺杂的结合","authors":"Guozhong Lu, Jiaxing Lv, Xiang Wu, Ying Jiang, Ming Shen, Bingwen Hu","doi":"10.1021/acs.jpclett.5c00527","DOIUrl":null,"url":null,"abstract":"The halide electrolyte Li<sub>3</sub>InCl<sub>6</sub> has been proposed to function as a barrier layer between LiCoO<sub>2</sub> and solid electrolytes Li<sub>6</sub>PS<sub>5</sub>Cl, aimed at mitigating interfacial issues. Here we reveal that the employment of Li<sub>3</sub>InCl<sub>6</sub> as a barrier layer is still ineffective for the LiCoO<sub>2</sub> cathode due to the oxygen redox on the surface and the irreversible phase transition of LiCoO<sub>2</sub> at a high voltage of 4.6 V. To suppress the irreversible phase transition and modulate the oxygen valence on the surface, we have introduced a Ti–Mg–Al doping strategy for LiCoO<sub>2</sub>. Remarkably, this doping suppresses the irreversible phase transition, stabilizes the structure of LiCoO<sub>2</sub> under high voltage, and significantly reduces the formation of O<sup><i>n</i>–</sup> (<i>n</i> &lt; 2) on the LiCoO<sub>2</sub> surface. This doping strategy together with a bilayer electrolyte design attains good electrochemical performance in 4.6 V LiCoO<sub>2</sub> all-solid-state batteries, achieving a cycling life of 2200 cycles between 2.5 and 4.6 V with 80% capacity retention.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"5 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Multiple-Element Doping of LiCoO2 and Bilayer Electrolytes for 4.6 V High-Voltage All-Solid-State Lithium Batteries\",\"authors\":\"Guozhong Lu, Jiaxing Lv, Xiang Wu, Ying Jiang, Ming Shen, Bingwen Hu\",\"doi\":\"10.1021/acs.jpclett.5c00527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The halide electrolyte Li<sub>3</sub>InCl<sub>6</sub> has been proposed to function as a barrier layer between LiCoO<sub>2</sub> and solid electrolytes Li<sub>6</sub>PS<sub>5</sub>Cl, aimed at mitigating interfacial issues. Here we reveal that the employment of Li<sub>3</sub>InCl<sub>6</sub> as a barrier layer is still ineffective for the LiCoO<sub>2</sub> cathode due to the oxygen redox on the surface and the irreversible phase transition of LiCoO<sub>2</sub> at a high voltage of 4.6 V. To suppress the irreversible phase transition and modulate the oxygen valence on the surface, we have introduced a Ti–Mg–Al doping strategy for LiCoO<sub>2</sub>. Remarkably, this doping suppresses the irreversible phase transition, stabilizes the structure of LiCoO<sub>2</sub> under high voltage, and significantly reduces the formation of O<sup><i>n</i>–</sup> (<i>n</i> &lt; 2) on the LiCoO<sub>2</sub> surface. This doping strategy together with a bilayer electrolyte design attains good electrochemical performance in 4.6 V LiCoO<sub>2</sub> all-solid-state batteries, achieving a cycling life of 2200 cycles between 2.5 and 4.6 V with 80% capacity retention.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.5c00527\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00527","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

卤化物电解质Li3InCl6被提出作为LiCoO2和固体电解质Li6PS5Cl之间的屏障层,旨在缓解界面问题。研究表明,在4.6 V高压下,由于表面氧氧化还原和LiCoO2的不可逆相变,使用Li3InCl6作为势垒层对LiCoO2阴极来说仍然是无效的。为了抑制LiCoO2表面的不可逆相变和调节氧价,我们引入了Ti-Mg-Al掺杂策略。值得注意的是,这种掺杂抑制了不可逆相变,稳定了LiCoO2在高压下的结构,并显著减少了On - (n <)的形成;2)在LiCoO2表面。这种掺杂策略与双层电解质设计在4.6 V LiCoO2全固态电池中获得了良好的电化学性能,在2.5至4.6 V之间实现了2200次循环寿命,容量保持率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining Multiple-Element Doping of LiCoO2 and Bilayer Electrolytes for 4.6 V High-Voltage All-Solid-State Lithium Batteries

Combining Multiple-Element Doping of LiCoO2 and Bilayer Electrolytes for 4.6 V High-Voltage All-Solid-State Lithium Batteries
The halide electrolyte Li3InCl6 has been proposed to function as a barrier layer between LiCoO2 and solid electrolytes Li6PS5Cl, aimed at mitigating interfacial issues. Here we reveal that the employment of Li3InCl6 as a barrier layer is still ineffective for the LiCoO2 cathode due to the oxygen redox on the surface and the irreversible phase transition of LiCoO2 at a high voltage of 4.6 V. To suppress the irreversible phase transition and modulate the oxygen valence on the surface, we have introduced a Ti–Mg–Al doping strategy for LiCoO2. Remarkably, this doping suppresses the irreversible phase transition, stabilizes the structure of LiCoO2 under high voltage, and significantly reduces the formation of On (n < 2) on the LiCoO2 surface. This doping strategy together with a bilayer electrolyte design attains good electrochemical performance in 4.6 V LiCoO2 all-solid-state batteries, achieving a cycling life of 2200 cycles between 2.5 and 4.6 V with 80% capacity retention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信