UiO-66-NH2膜的快速可扩展制造,用于超高通量油水分离,不影响任何拒绝系数

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Mengqi Liu , Lu Zhang , Xingyu Quan , Runnan Zhang , Linzhi Zhai , Fu Yang , Peng Song , Feng Feng , Jianming Pan
{"title":"UiO-66-NH2膜的快速可扩展制造,用于超高通量油水分离,不影响任何拒绝系数","authors":"Mengqi Liu ,&nbsp;Lu Zhang ,&nbsp;Xingyu Quan ,&nbsp;Runnan Zhang ,&nbsp;Linzhi Zhai ,&nbsp;Fu Yang ,&nbsp;Peng Song ,&nbsp;Feng Feng ,&nbsp;Jianming Pan","doi":"10.1016/j.seppur.2025.132517","DOIUrl":null,"url":null,"abstract":"<div><div>Energy-efficient membrane technologies have attracted significant attention in oil–water separation, yet the persistent permeability-selectivity trade-off remains a critical challenge. While traditional Zr-based MOF membranes demonstrate exceptional stability for such applications, their practical implementation is hindered by the high energy barrier of Zr-O bond formation, necessitating harsh synthetic conditions (prolonged durations and toxic organic solvents) that impede large-scale production. This study presents a breakthrough in rapid, scalable membrane fabrication through an innovative solvent impregnation strategy, successfully developing UiO-66-NH<sub>2</sub>@stainless-steel mesh (UiO-66-NH<sub>2</sub>@SSM) membranes for ultrahigh-flux oil–water emulsion separation without compromising rejection efficiency. By utilizing ethanol as an eco-friendly reaction medium, we achieved in-situ growth of UiO-66-NH<sub>2</sub> on SSM substrates within merely 3 h − an 87.5 % reduction in synthesis time compared to conventional solvothermal methods (24 h). The optimized membrane exhibits record-breaking permeation fluxes up to 11.0 × 10<sup>4</sup> L m<sup>−2</sup> h<sup>−1</sup> while maintaining exceptional separation efficiencies (&gt;99.9 %) for various oil emulsions (chloroform, petroleum ether, and n-hexane). This flux performance surpasses the state-of-the-art UiO-66-NH<sub>2</sub> membranes by 28.9 %, representing unprecedented advancement in the field. The exceptional performance originates from a hierarchical micro-nano architecture featuring UiO-66-NH<sub>2</sub> nanoclusters on SSM, which synergistically enhances surface hydrophilicity and creates optimized water transport channels. Furthermore, the membrane demonstrates remarkable durability and chemical resilience against extreme pH conditions and high-salinity environments. Notably, the fabrication process maintains consistent performance metrics during scale-up, highlighting its potential for industrial implementation. This work not only provides an efficient solution for separating submicron oil droplets in emulsions but also overcomes the fundamental permeability-selectivity trade-off effect in membrane-based separation technologies.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"364 ","pages":"Article 132517"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and scalable fabrication of UiO-66-NH2 membrane for ultra-high-flux oil–water separation without any compromising rejection coefficient\",\"authors\":\"Mengqi Liu ,&nbsp;Lu Zhang ,&nbsp;Xingyu Quan ,&nbsp;Runnan Zhang ,&nbsp;Linzhi Zhai ,&nbsp;Fu Yang ,&nbsp;Peng Song ,&nbsp;Feng Feng ,&nbsp;Jianming Pan\",\"doi\":\"10.1016/j.seppur.2025.132517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy-efficient membrane technologies have attracted significant attention in oil–water separation, yet the persistent permeability-selectivity trade-off remains a critical challenge. While traditional Zr-based MOF membranes demonstrate exceptional stability for such applications, their practical implementation is hindered by the high energy barrier of Zr-O bond formation, necessitating harsh synthetic conditions (prolonged durations and toxic organic solvents) that impede large-scale production. This study presents a breakthrough in rapid, scalable membrane fabrication through an innovative solvent impregnation strategy, successfully developing UiO-66-NH<sub>2</sub>@stainless-steel mesh (UiO-66-NH<sub>2</sub>@SSM) membranes for ultrahigh-flux oil–water emulsion separation without compromising rejection efficiency. By utilizing ethanol as an eco-friendly reaction medium, we achieved in-situ growth of UiO-66-NH<sub>2</sub> on SSM substrates within merely 3 h − an 87.5 % reduction in synthesis time compared to conventional solvothermal methods (24 h). The optimized membrane exhibits record-breaking permeation fluxes up to 11.0 × 10<sup>4</sup> L m<sup>−2</sup> h<sup>−1</sup> while maintaining exceptional separation efficiencies (&gt;99.9 %) for various oil emulsions (chloroform, petroleum ether, and n-hexane). This flux performance surpasses the state-of-the-art UiO-66-NH<sub>2</sub> membranes by 28.9 %, representing unprecedented advancement in the field. The exceptional performance originates from a hierarchical micro-nano architecture featuring UiO-66-NH<sub>2</sub> nanoclusters on SSM, which synergistically enhances surface hydrophilicity and creates optimized water transport channels. Furthermore, the membrane demonstrates remarkable durability and chemical resilience against extreme pH conditions and high-salinity environments. Notably, the fabrication process maintains consistent performance metrics during scale-up, highlighting its potential for industrial implementation. This work not only provides an efficient solution for separating submicron oil droplets in emulsions but also overcomes the fundamental permeability-selectivity trade-off effect in membrane-based separation technologies.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"364 \",\"pages\":\"Article 132517\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586625011141\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586625011141","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

节能膜技术在油水分离领域引起了人们的广泛关注,但持续的渗透率和选择性权衡仍然是一个关键的挑战。虽然传统的zr基MOF膜在此类应用中表现出优异的稳定性,但它们的实际实施受到Zr-O键形成的高能量障碍的阻碍,需要苛刻的合成条件(持续时间长,有毒的有机溶剂),阻碍了大规模生产。本研究通过一种创新的溶剂浸渍策略,在快速、可扩展的膜制造方面取得了突破,成功开发了UiO-66-NH2@stainless-steel网状(UiO-66-NH2@SSM)膜,用于超高通量油水乳液分离,同时不影响过滤效率。通过使用乙醇作为环保反应介质,我们在SSM底物上实现了uuo -66- nh2的原位生长,仅需3 h,与传统的溶剂热方法(24 h)相比,合成时间缩短了87.5 %。优化后的膜具有破纪录的渗透通量,高达11.0 × 104 L m−2 h−1,同时对各种油乳剂(氯仿、石油醚和正己烷)保持优异的分离效率(>99.9 %)。该通量性能比最先进的UiO-66-NH2膜高出28.9 %,代表了该领域前所未有的进步。这种优异的性能源于SSM上的UiO-66-NH2纳米簇的分层微纳结构,它协同增强了表面亲水性,并创造了优化的水运通道。此外,该膜在极端pH条件和高盐度环境下表现出卓越的耐久性和化学弹性。值得注意的是,制造过程在放大过程中保持一致的性能指标,突出了其工业实施的潜力。这项工作不仅为分离亚微米油滴提供了一种有效的解决方案,而且克服了膜基分离技术中基本的渗透率-选择性权衡效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid and scalable fabrication of UiO-66-NH2 membrane for ultra-high-flux oil–water separation without any compromising rejection coefficient

Rapid and scalable fabrication of UiO-66-NH2 membrane for ultra-high-flux oil–water separation without any compromising rejection coefficient

Rapid and scalable fabrication of UiO-66-NH2 membrane for ultra-high-flux oil–water separation without any compromising rejection coefficient
Energy-efficient membrane technologies have attracted significant attention in oil–water separation, yet the persistent permeability-selectivity trade-off remains a critical challenge. While traditional Zr-based MOF membranes demonstrate exceptional stability for such applications, their practical implementation is hindered by the high energy barrier of Zr-O bond formation, necessitating harsh synthetic conditions (prolonged durations and toxic organic solvents) that impede large-scale production. This study presents a breakthrough in rapid, scalable membrane fabrication through an innovative solvent impregnation strategy, successfully developing UiO-66-NH2@stainless-steel mesh (UiO-66-NH2@SSM) membranes for ultrahigh-flux oil–water emulsion separation without compromising rejection efficiency. By utilizing ethanol as an eco-friendly reaction medium, we achieved in-situ growth of UiO-66-NH2 on SSM substrates within merely 3 h − an 87.5 % reduction in synthesis time compared to conventional solvothermal methods (24 h). The optimized membrane exhibits record-breaking permeation fluxes up to 11.0 × 104 L m−2 h−1 while maintaining exceptional separation efficiencies (>99.9 %) for various oil emulsions (chloroform, petroleum ether, and n-hexane). This flux performance surpasses the state-of-the-art UiO-66-NH2 membranes by 28.9 %, representing unprecedented advancement in the field. The exceptional performance originates from a hierarchical micro-nano architecture featuring UiO-66-NH2 nanoclusters on SSM, which synergistically enhances surface hydrophilicity and creates optimized water transport channels. Furthermore, the membrane demonstrates remarkable durability and chemical resilience against extreme pH conditions and high-salinity environments. Notably, the fabrication process maintains consistent performance metrics during scale-up, highlighting its potential for industrial implementation. This work not only provides an efficient solution for separating submicron oil droplets in emulsions but also overcomes the fundamental permeability-selectivity trade-off effect in membrane-based separation technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信