单晶叶片LMC定向凝固过程中杂粒缺陷的控制与优化

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yongtao Xiong, Zhongqiu Liu, Yu Li, Ning Wang, Jian Shen, Yuzhang Lu, Baokuan Li
{"title":"单晶叶片LMC定向凝固过程中杂粒缺陷的控制与优化","authors":"Yongtao Xiong, Zhongqiu Liu, Yu Li, Ning Wang, Jian Shen, Yuzhang Lu, Baokuan Li","doi":"10.1016/j.jallcom.2025.179742","DOIUrl":null,"url":null,"abstract":"Single-crystal blades produced through the liquid metal cooling (LMC) process exhibit excellent high-temperature mechanical properties due to the elimination of grain boundaries. However, the formation of stray grain reintroduces grain boundaries, compromising the integrity of the single-crystal structure and the service performance of the blades. To address this, a predictive model for the temperature distribution and solidification structure during the LMC directional solidification process of single-crystal blades was developed. The solid/liquid interface stability, dendrite growth behavior and stray grain formation tendency in DD26 alloy single-crystal castings were investigated, and the formation mechanism of stray grain defect was systematically analyzed. The results show that as the withdrawal rate <em>v</em> increases, the mushy zone thickness decreases from 5.0<!-- --> <!-- -->mm (<em>v</em><sub>1</sub>) to 3.4<!-- --> <!-- -->mm (<em>v</em><sub>9</sub>), the solid/liquid interface transitions from a convex shape, which promotes the divergent growth of dendrites, to a flat interface, and further develops into a concave shape that promotes the convergent growth of dendrites. A large number of stray grains, misoriented with the preferred crystal orientation (14.17°), appear at the end of the platform, and the dendrite spacing within the stray grain regions significantly decreases. The critical withdrawal rate <em>v</em><sub>cr</sub> for stray grain formation is determined to be 4.8<!-- --> <!-- -->mm·min<sup>-1</sup>, corresponding to a critical nucleation undercooling <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x394;&lt;/mi&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;c&lt;/mi&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x204E;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.125ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -995.6 2128.8 1345.3\" width=\"4.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAINI-394\"></use></g><g is=\"true\" transform=\"translate(818,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(740,404)\"><g is=\"true\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(39.032) matrix(1 0 0 -1 0 0)\">⁎</text></g></g><g is=\"true\" transform=\"translate(584,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g><g is=\"true\" transform=\"translate(306,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-72\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">Δ</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">⁎</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">Δ</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">⁎</mo></mrow></msubsup></math></script></span> of 9.0 °C. The optimized variable withdrawal rate process effectively controls the dendrite tip undercooling below the threshold <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x394;&lt;/mi&gt;&lt;msubsup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;c&lt;/mi&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mo is=\"true\"&gt;&amp;#x204E;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.125ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -995.6 2128.8 1345.3\" width=\"4.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAINI-394\"></use></g><g is=\"true\" transform=\"translate(818,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-54\"></use></g></g><g is=\"true\" transform=\"translate(740,404)\"><g is=\"true\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(39.032) matrix(1 0 0 -1 0 0)\">⁎</text></g></g><g is=\"true\" transform=\"translate(584,-248)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g><g is=\"true\" transform=\"translate(306,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-72\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">Δ</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">⁎</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">Δ</mi><msubsup is=\"true\"><mrow is=\"true\"><mi is=\"true\">T</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi><mi is=\"true\">r</mi></mrow><mrow is=\"true\"><mo is=\"true\">⁎</mo></mrow></msubsup></math></script></span>, resulting in blades with an intact single-crystal structure.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"213 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control and Optimization of Stray Grain Defect during LMC Directional Solidification Process of Single-Crystal Blade\",\"authors\":\"Yongtao Xiong, Zhongqiu Liu, Yu Li, Ning Wang, Jian Shen, Yuzhang Lu, Baokuan Li\",\"doi\":\"10.1016/j.jallcom.2025.179742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-crystal blades produced through the liquid metal cooling (LMC) process exhibit excellent high-temperature mechanical properties due to the elimination of grain boundaries. However, the formation of stray grain reintroduces grain boundaries, compromising the integrity of the single-crystal structure and the service performance of the blades. To address this, a predictive model for the temperature distribution and solidification structure during the LMC directional solidification process of single-crystal blades was developed. The solid/liquid interface stability, dendrite growth behavior and stray grain formation tendency in DD26 alloy single-crystal castings were investigated, and the formation mechanism of stray grain defect was systematically analyzed. The results show that as the withdrawal rate <em>v</em> increases, the mushy zone thickness decreases from 5.0<!-- --> <!-- -->mm (<em>v</em><sub>1</sub>) to 3.4<!-- --> <!-- -->mm (<em>v</em><sub>9</sub>), the solid/liquid interface transitions from a convex shape, which promotes the divergent growth of dendrites, to a flat interface, and further develops into a concave shape that promotes the convergent growth of dendrites. A large number of stray grains, misoriented with the preferred crystal orientation (14.17°), appear at the end of the platform, and the dendrite spacing within the stray grain regions significantly decreases. The critical withdrawal rate <em>v</em><sub>cr</sub> for stray grain formation is determined to be 4.8<!-- --> <!-- -->mm·min<sup>-1</sup>, corresponding to a critical nucleation undercooling <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x394;&lt;/mi&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;c&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x204E;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.125ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -995.6 2128.8 1345.3\\\" width=\\\"4.944ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAINI-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(818,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(740,404)\\\"><g is=\\\"true\\\"><text font-family=\\\"STIXGeneral,'Arial Unicode MS',serif\\\" stroke=\\\"none\\\" transform=\\\"scale(39.032) matrix(1 0 0 -1 0 0)\\\">⁎</text></g></g><g is=\\\"true\\\" transform=\\\"translate(584,-248)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-63\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(306,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-72\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">Δ</mi><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi><mi is=\\\"true\\\">r</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">⁎</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">Δ</mi><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi><mi is=\\\"true\\\">r</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">⁎</mo></mrow></msubsup></math></script></span> of 9.0 °C. The optimized variable withdrawal rate process effectively controls the dendrite tip undercooling below the threshold <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x394;&lt;/mi&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;c&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mo is=\\\"true\\\"&gt;&amp;#x204E;&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.125ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.812ex;\\\" viewbox=\\\"0 -995.6 2128.8 1345.3\\\" width=\\\"4.944ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAINI-394\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(818,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-54\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(740,404)\\\"><g is=\\\"true\\\"><text font-family=\\\"STIXGeneral,'Arial Unicode MS',serif\\\" stroke=\\\"none\\\" transform=\\\"scale(39.032) matrix(1 0 0 -1 0 0)\\\">⁎</text></g></g><g is=\\\"true\\\" transform=\\\"translate(584,-248)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-63\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(306,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-72\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">Δ</mi><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi><mi is=\\\"true\\\">r</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">⁎</mo></mrow></msubsup></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">Δ</mi><msubsup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">T</mi></mrow><mrow is=\\\"true\\\"><mi is=\\\"true\\\">c</mi><mi is=\\\"true\\\">r</mi></mrow><mrow is=\\\"true\\\"><mo is=\\\"true\\\">⁎</mo></mrow></msubsup></math></script></span>, resulting in blades with an intact single-crystal structure.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"213 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2025.179742\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2025.179742","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过液态金属冷却(LMC)工艺生产的单晶叶片由于消除了晶界而具有优异的高温力学性能。然而,杂散晶粒的形成重新引入了晶界,损害了单晶结构的完整性和叶片的使用性能。针对这一问题,建立了单晶叶片LMC定向凝固过程温度分布和凝固组织的预测模型。研究了DD26合金单晶铸件的固液界面稳定性、枝晶生长行为和杂晶形成趋势,系统分析了杂晶缺陷的形成机理。结果表明:随着退出速率v的增大,黏结区厚度从5.0 mm (v1)减小到3.4 mm (v9),固液界面由促进枝晶发散生长的凸界面转变为平面界面,并进一步发展为促进枝晶收敛生长的凹界面;平台末端出现大量以首选晶向(14.17°)错取向的杂散晶粒,杂散晶粒区域内的枝晶间距显著减小。确定杂散晶粒形成的临界退出速率vcr为4.8 mm·min-1,对应于9.0°C的临界成核过冷 ΔTcr ΔTcr 。优化后的变退出速率工艺有效地将枝晶尖端过冷控制在阈值以下,从而使叶片具有完整的单晶结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control and Optimization of Stray Grain Defect during LMC Directional Solidification Process of Single-Crystal Blade
Single-crystal blades produced through the liquid metal cooling (LMC) process exhibit excellent high-temperature mechanical properties due to the elimination of grain boundaries. However, the formation of stray grain reintroduces grain boundaries, compromising the integrity of the single-crystal structure and the service performance of the blades. To address this, a predictive model for the temperature distribution and solidification structure during the LMC directional solidification process of single-crystal blades was developed. The solid/liquid interface stability, dendrite growth behavior and stray grain formation tendency in DD26 alloy single-crystal castings were investigated, and the formation mechanism of stray grain defect was systematically analyzed. The results show that as the withdrawal rate v increases, the mushy zone thickness decreases from 5.0 mm (v1) to 3.4 mm (v9), the solid/liquid interface transitions from a convex shape, which promotes the divergent growth of dendrites, to a flat interface, and further develops into a concave shape that promotes the convergent growth of dendrites. A large number of stray grains, misoriented with the preferred crystal orientation (14.17°), appear at the end of the platform, and the dendrite spacing within the stray grain regions significantly decreases. The critical withdrawal rate vcr for stray grain formation is determined to be 4.8 mm·min-1, corresponding to a critical nucleation undercooling ΔTcr of 9.0 °C. The optimized variable withdrawal rate process effectively controls the dendrite tip undercooling below the threshold ΔTcr, resulting in blades with an intact single-crystal structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信