复合SnO2-K2S ETL用于钙钛矿太阳能电池的能级调节和电子迁移率增强

IF 4.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ruiyuan Hu, Yongjun Li, Fan Zhang, Yuhui Ma, Taomiao Wang, Fei Wang, Yonggui Sun, Xing’ao Li, Hanlin Hu and Yi Zhang
{"title":"复合SnO2-K2S ETL用于钙钛矿太阳能电池的能级调节和电子迁移率增强","authors":"Ruiyuan Hu, Yongjun Li, Fan Zhang, Yuhui Ma, Taomiao Wang, Fei Wang, Yonggui Sun, Xing’ao Li, Hanlin Hu and Yi Zhang","doi":"10.1039/D5CC00194C","DOIUrl":null,"url":null,"abstract":"<p >High-performance perovskite solar cells commonly utilize SnO<small><sub>2</sub></small> as the electron transport layer (ETL), which is vital for perovskite crystallization and defect regulation, yet energy level mismatch, oxygen vacancies in SnO<small><sub>2</sub></small>, and defects at the buried interface impede the device's photovoltaic performance. Therefore, we found that incorporating K<small><sub>2</sub></small>S into the SnO<small><sub>2</sub></small> layer effectively regulated the energy levels and occupied oxygen vacancies, enhancing the electron mobility of the composite SnO<small><sub>2</sub></small>–K<small><sub>2</sub></small>S ETL and improving the interface quality to promote efficient electron extraction and transport. Consequently, the device based on SnO<small><sub>2</sub></small>–K<small><sub>2</sub></small>S ETL showed an enhanced photovoltaic performance with power conversion efficiency of to 23.28%.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" 47","pages":" 8540-8543"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite SnO2–K2S ETL for energy level regulation and electron mobility enhancement in perovskite solar cells†\",\"authors\":\"Ruiyuan Hu, Yongjun Li, Fan Zhang, Yuhui Ma, Taomiao Wang, Fei Wang, Yonggui Sun, Xing’ao Li, Hanlin Hu and Yi Zhang\",\"doi\":\"10.1039/D5CC00194C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-performance perovskite solar cells commonly utilize SnO<small><sub>2</sub></small> as the electron transport layer (ETL), which is vital for perovskite crystallization and defect regulation, yet energy level mismatch, oxygen vacancies in SnO<small><sub>2</sub></small>, and defects at the buried interface impede the device's photovoltaic performance. Therefore, we found that incorporating K<small><sub>2</sub></small>S into the SnO<small><sub>2</sub></small> layer effectively regulated the energy levels and occupied oxygen vacancies, enhancing the electron mobility of the composite SnO<small><sub>2</sub></small>–K<small><sub>2</sub></small>S ETL and improving the interface quality to promote efficient electron extraction and transport. Consequently, the device based on SnO<small><sub>2</sub></small>–K<small><sub>2</sub></small>S ETL showed an enhanced photovoltaic performance with power conversion efficiency of to 23.28%.</p>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\" 47\",\"pages\":\" 8540-8543\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc00194c\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc00194c","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高性能的钙钛矿太阳能电池一般是基于SnO2作为电子传输层。SnO2层对于钙钛矿的结晶和缺陷调控至关重要,对器件性能有重要影响。能级失配和氧空位是SnO2的主要挑战。此外,埋设界面(SnO2/钙钛矿)缺陷阻碍了器件的光伏性能。为了优化SnO2层,我们发现在SnO2层中加入K2S有效地调节了SnO2层的能级并占据了氧空位。此外,SnO2-K2S复合电子传递层的电子迁移率增强,界面质量也得到改善,促进了电子的高效提取和传递。此外,还降低了钙钛矿的结晶速度以获得大晶粒尺寸。埋藏界面处和钙钛矿层内的缺陷被钝化,陷阱态密度降低,载流子复合受到抑制。结果表明,基于SnO2-K2S电子传输层的器件具有较好的光电性能,功率转换效率高达23.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Composite SnO2–K2S ETL for energy level regulation and electron mobility enhancement in perovskite solar cells†

Composite SnO2–K2S ETL for energy level regulation and electron mobility enhancement in perovskite solar cells†

High-performance perovskite solar cells commonly utilize SnO2 as the electron transport layer (ETL), which is vital for perovskite crystallization and defect regulation, yet energy level mismatch, oxygen vacancies in SnO2, and defects at the buried interface impede the device's photovoltaic performance. Therefore, we found that incorporating K2S into the SnO2 layer effectively regulated the energy levels and occupied oxygen vacancies, enhancing the electron mobility of the composite SnO2–K2S ETL and improving the interface quality to promote efficient electron extraction and transport. Consequently, the device based on SnO2–K2S ETL showed an enhanced photovoltaic performance with power conversion efficiency of to 23.28%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信