Min Zhu, Kaiwen Zhang, Evan C. Thomas, Ran Xu, Brian Ciruna, Sevan Hopyan, Yu Sun
{"title":"薄板弹性成像的组织刚度映射","authors":"Min Zhu, Kaiwen Zhang, Evan C. Thomas, Ran Xu, Brian Ciruna, Sevan Hopyan, Yu Sun","doi":"10.1126/sciadv.adt7274","DOIUrl":null,"url":null,"abstract":"Tissue stiffness plays a crucial role in regulating morphogenesis. The ability to measure and monitor the dynamic progression of tissue stiffness is important for generating and testing mechanistic hypotheses. Methods to measure tissue properties in vivo have been emerging but present challenges with spatial and temporal resolution especially in 3D, by their reliance on highly specialized equipment, and/or due to their invasive nature. Here, we introduce light sheet elastography, a noninvasive method that couples low-frequency shear waves with light sheet fluorescence microscopy by adapting commercially available instruments. With this method, we achieved in toto stiffness mapping of organ-stage mouse and zebrafish embryos at cellular resolution. Versatility of the method enabled time-lapse stiffness mapping during tissue remodeling and of the beating embryonic heart. This method expands the spectrum of tools available to biologists and presents opportunities for uncovering the mechanical basis of morphogenesis.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"56 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue stiffness mapping by light sheet elastography\",\"authors\":\"Min Zhu, Kaiwen Zhang, Evan C. Thomas, Ran Xu, Brian Ciruna, Sevan Hopyan, Yu Sun\",\"doi\":\"10.1126/sciadv.adt7274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue stiffness plays a crucial role in regulating morphogenesis. The ability to measure and monitor the dynamic progression of tissue stiffness is important for generating and testing mechanistic hypotheses. Methods to measure tissue properties in vivo have been emerging but present challenges with spatial and temporal resolution especially in 3D, by their reliance on highly specialized equipment, and/or due to their invasive nature. Here, we introduce light sheet elastography, a noninvasive method that couples low-frequency shear waves with light sheet fluorescence microscopy by adapting commercially available instruments. With this method, we achieved in toto stiffness mapping of organ-stage mouse and zebrafish embryos at cellular resolution. Versatility of the method enabled time-lapse stiffness mapping during tissue remodeling and of the beating embryonic heart. This method expands the spectrum of tools available to biologists and presents opportunities for uncovering the mechanical basis of morphogenesis.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adt7274\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt7274","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Tissue stiffness mapping by light sheet elastography
Tissue stiffness plays a crucial role in regulating morphogenesis. The ability to measure and monitor the dynamic progression of tissue stiffness is important for generating and testing mechanistic hypotheses. Methods to measure tissue properties in vivo have been emerging but present challenges with spatial and temporal resolution especially in 3D, by their reliance on highly specialized equipment, and/or due to their invasive nature. Here, we introduce light sheet elastography, a noninvasive method that couples low-frequency shear waves with light sheet fluorescence microscopy by adapting commercially available instruments. With this method, we achieved in toto stiffness mapping of organ-stage mouse and zebrafish embryos at cellular resolution. Versatility of the method enabled time-lapse stiffness mapping during tissue remodeling and of the beating embryonic heart. This method expands the spectrum of tools available to biologists and presents opportunities for uncovering the mechanical basis of morphogenesis.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.