Fuyuan Zheng, Xufeng Wan, Yangming Zhang, Yan Yue, Qiaochu Li, Zhuang Zhang, Shuoyuan Li, Hong Xu, Qiang Su, Xiaoting Chen, Le Tong, Long Zhao, Jian Cao, Xin Tang, Xiao Yang, Jiagang Wu, Jian Li, Xiang Lv, Zongke Zhou, Duan Wang
{"title":"多模态富缺陷纳米反应器触发声压电串联催化和铁代谢破坏种植体感染","authors":"Fuyuan Zheng, Xufeng Wan, Yangming Zhang, Yan Yue, Qiaochu Li, Zhuang Zhang, Shuoyuan Li, Hong Xu, Qiang Su, Xiaoting Chen, Le Tong, Long Zhao, Jian Cao, Xin Tang, Xiao Yang, Jiagang Wu, Jian Li, Xiang Lv, Zongke Zhou, Duan Wang","doi":"10.1126/sciadv.ads8694","DOIUrl":null,"url":null,"abstract":"Tracking and eradicating drug-resistant bacteria are critical for combating implant-associated infections, yet effective antibacterial therapies remain elusive. Herein, we propose an oxygen vacancy–rich (BiFe) <jats:sub>0.9</jats:sub> (BaTi) <jats:sub>0.1</jats:sub> O <jats:sub>3−</jats:sub> <jats:sub> <jats:italic>x</jats:italic> </jats:sub> nanoreactor as a piezoelectric sonosensitizer by spatiotemporal ultrasound–driven sono- and chemodynamic tandem catalysis to amplify antibacterial efficacy. The piezoelectric charge carriers under a built-in electric field synchronize the reaction of O <jats:sub>2</jats:sub> and H <jats:sub>2</jats:sub> O, efficiently generating H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> . The electron-rich oxygen vacancies modulate the local electronic structure of an Fe site. It facilitates reactive oxygen species generation by piezoelectric electrons and accelerates valence state cycles of Fe(III)/Fe(II) to achieve the sustained maintenance of hydroxyl radicals via H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> /Fe(II)–catalyzed chemodynamic reactions, which lead to bacterial membrane damage. Transcriptomics analysis revealed that intracellular Fe overload induced by excessive Fe(II)-mediated dysregulation of the two-component system disrupts bacterial metabolism, triggering bacterial ferroptosis-like death. Thus, the porous titanium scaffold, engineered with a piezoelectric nanoreactor, demonstrates superior antibacterial efficacy under ultrasound and facilitates osteogenesis via piezoelectric immunomodulation–activated therapy.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"23 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multimodal defect-rich nanoreactor triggers sono-piezoelectric tandem catalysis and iron metabolism disruption for implant infections\",\"authors\":\"Fuyuan Zheng, Xufeng Wan, Yangming Zhang, Yan Yue, Qiaochu Li, Zhuang Zhang, Shuoyuan Li, Hong Xu, Qiang Su, Xiaoting Chen, Le Tong, Long Zhao, Jian Cao, Xin Tang, Xiao Yang, Jiagang Wu, Jian Li, Xiang Lv, Zongke Zhou, Duan Wang\",\"doi\":\"10.1126/sciadv.ads8694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking and eradicating drug-resistant bacteria are critical for combating implant-associated infections, yet effective antibacterial therapies remain elusive. Herein, we propose an oxygen vacancy–rich (BiFe) <jats:sub>0.9</jats:sub> (BaTi) <jats:sub>0.1</jats:sub> O <jats:sub>3−</jats:sub> <jats:sub> <jats:italic>x</jats:italic> </jats:sub> nanoreactor as a piezoelectric sonosensitizer by spatiotemporal ultrasound–driven sono- and chemodynamic tandem catalysis to amplify antibacterial efficacy. The piezoelectric charge carriers under a built-in electric field synchronize the reaction of O <jats:sub>2</jats:sub> and H <jats:sub>2</jats:sub> O, efficiently generating H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> . The electron-rich oxygen vacancies modulate the local electronic structure of an Fe site. It facilitates reactive oxygen species generation by piezoelectric electrons and accelerates valence state cycles of Fe(III)/Fe(II) to achieve the sustained maintenance of hydroxyl radicals via H <jats:sub>2</jats:sub> O <jats:sub>2</jats:sub> /Fe(II)–catalyzed chemodynamic reactions, which lead to bacterial membrane damage. Transcriptomics analysis revealed that intracellular Fe overload induced by excessive Fe(II)-mediated dysregulation of the two-component system disrupts bacterial metabolism, triggering bacterial ferroptosis-like death. Thus, the porous titanium scaffold, engineered with a piezoelectric nanoreactor, demonstrates superior antibacterial efficacy under ultrasound and facilitates osteogenesis via piezoelectric immunomodulation–activated therapy.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.ads8694\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads8694","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
追踪和根除耐药细菌对于对抗种植体相关感染至关重要,但有效的抗菌疗法仍然难以捉摸。在此,我们提出了一个富氧空位(BiFe) 0.9 (BaTi) 0.1 O 3 - x纳米反应器作为压电声敏剂,通过时空超声驱动声和化学动力学串联催化来增强抗菌效果。压电载流子在内置电场下同步o2和h2o的反应,有效地生成h2o。富电子氧空位调节了Fe位的局部电子结构。它促进了压电电子产生活性氧,加速了Fe(III)/Fe(II)的价态循环,通过h2o2 /Fe(II)催化的化学动力学反应实现羟基自由基的持续维持,从而导致细菌膜损伤。转录组学分析显示,由过量铁(II)介导的双组分系统失调引起的细胞内铁过载会破坏细菌代谢,引发细菌死铁样死亡。因此,用压电纳米反应器设计的多孔钛支架在超声下表现出优异的抗菌效果,并通过压电免疫调节激活疗法促进骨生成。
A multimodal defect-rich nanoreactor triggers sono-piezoelectric tandem catalysis and iron metabolism disruption for implant infections
Tracking and eradicating drug-resistant bacteria are critical for combating implant-associated infections, yet effective antibacterial therapies remain elusive. Herein, we propose an oxygen vacancy–rich (BiFe) 0.9 (BaTi) 0.1 O 3−x nanoreactor as a piezoelectric sonosensitizer by spatiotemporal ultrasound–driven sono- and chemodynamic tandem catalysis to amplify antibacterial efficacy. The piezoelectric charge carriers under a built-in electric field synchronize the reaction of O 2 and H 2 O, efficiently generating H 2 O 2 . The electron-rich oxygen vacancies modulate the local electronic structure of an Fe site. It facilitates reactive oxygen species generation by piezoelectric electrons and accelerates valence state cycles of Fe(III)/Fe(II) to achieve the sustained maintenance of hydroxyl radicals via H 2 O 2 /Fe(II)–catalyzed chemodynamic reactions, which lead to bacterial membrane damage. Transcriptomics analysis revealed that intracellular Fe overload induced by excessive Fe(II)-mediated dysregulation of the two-component system disrupts bacterial metabolism, triggering bacterial ferroptosis-like death. Thus, the porous titanium scaffold, engineered with a piezoelectric nanoreactor, demonstrates superior antibacterial efficacy under ultrasound and facilitates osteogenesis via piezoelectric immunomodulation–activated therapy.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.