{"title":"丙炔基/烯丙基钯中间体控制链生长聚合","authors":"Zheng-Lin Wang, Rong Zhu","doi":"10.1038/s41467-025-57723-8","DOIUrl":null,"url":null,"abstract":"<p>In contrast to allyl palladium complexes, propargylic/allenylic palladium species display complex reactivities that limit their implementation in polymer chemistry, especially for chain-growth polymerizations. Here we report an example of controlled chain-growth polymerization via propargyl/allenyl palladium intermediates. Vinylidenecyclopropane 1,1-dicarboxylate (VDCP), a unique allenylic electrophile, selectively reacts via the <i>σ</i>-allenyl palladium complex rather than the more common <i>π</i>-propargyl pathway, thereby unlocking a chain-growth process. Based on this concept, precise synthesis of alkyne-backbone polymers is realized, featuring fast rate, high molecular weight, narrow dispersity, high chemoselectivity, and excellent end-group fidelity. We demonstrate preparation of unsaturated macromolecules with advanced sequences and architectures using this method, including block, gradient, and graft copolymers.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled chain-growth polymerization via propargyl/allenyl palladium intermediates\",\"authors\":\"Zheng-Lin Wang, Rong Zhu\",\"doi\":\"10.1038/s41467-025-57723-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In contrast to allyl palladium complexes, propargylic/allenylic palladium species display complex reactivities that limit their implementation in polymer chemistry, especially for chain-growth polymerizations. Here we report an example of controlled chain-growth polymerization via propargyl/allenyl palladium intermediates. Vinylidenecyclopropane 1,1-dicarboxylate (VDCP), a unique allenylic electrophile, selectively reacts via the <i>σ</i>-allenyl palladium complex rather than the more common <i>π</i>-propargyl pathway, thereby unlocking a chain-growth process. Based on this concept, precise synthesis of alkyne-backbone polymers is realized, featuring fast rate, high molecular weight, narrow dispersity, high chemoselectivity, and excellent end-group fidelity. We demonstrate preparation of unsaturated macromolecules with advanced sequences and architectures using this method, including block, gradient, and graft copolymers.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57723-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57723-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Controlled chain-growth polymerization via propargyl/allenyl palladium intermediates
In contrast to allyl palladium complexes, propargylic/allenylic palladium species display complex reactivities that limit their implementation in polymer chemistry, especially for chain-growth polymerizations. Here we report an example of controlled chain-growth polymerization via propargyl/allenyl palladium intermediates. Vinylidenecyclopropane 1,1-dicarboxylate (VDCP), a unique allenylic electrophile, selectively reacts via the σ-allenyl palladium complex rather than the more common π-propargyl pathway, thereby unlocking a chain-growth process. Based on this concept, precise synthesis of alkyne-backbone polymers is realized, featuring fast rate, high molecular weight, narrow dispersity, high chemoselectivity, and excellent end-group fidelity. We demonstrate preparation of unsaturated macromolecules with advanced sequences and architectures using this method, including block, gradient, and graft copolymers.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.