中国地下水水质演变

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qing Zhou, Jiangjiang Zhang, Shuyou Zhang, Qiang Chen, Huifeng Fan, Chenglong Cao, Yanni Zhang, Yadi Yang, Jian Luo, Yijun Yao
{"title":"中国地下水水质演变","authors":"Qing Zhou, Jiangjiang Zhang, Shuyou Zhang, Qiang Chen, Huifeng Fan, Chenglong Cao, Yanni Zhang, Yadi Yang, Jian Luo, Yijun Yao","doi":"10.1038/s41467-025-57853-z","DOIUrl":null,"url":null,"abstract":"<p>China is facing a severe groundwater quality crisis amid economic development and climate change, yet the extent and trajectory of this crisis remain largely unknown. Here we developed a machine-learning model, incorporating natural and social-economic factors, to construct annual probabilistic maps of poor groundwater quality (PGQ, i.e., Class V based on the Chinese groundwater quality standard) across China from 1980 to 2100. Alarmingly, our findings indicate a concerning escalation in PGQ area ratio, rising from 17.3% in 1980 to 30.1% in 2000, and surging to 40.8% by 2020, adversely affecting 6.8%, 17.5%, and 36.0% of the Chinese population, respectively. The predominant drivers of this degradation were identified as agricultural discharge (contributing to 10.7% growth in PGQ area ratio), followed by groundwater exploitation (5.6%), industrial discharge (5.3%), domestic discharge (1.7%), climate change (0.5%), and land use change (-0.3%). By 2050, the PGQ area ratio could range from 37.9% to 48.3% under different socio-economic and climate scenarios. Our study highlights the urgent need for effective water resources management and conservation measures to mitigate the deteriorating trend of groundwater quality and address the challenges posed by socio-economic development and climate change, thereby safeguarding water security for China and the global community.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"32 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groundwater quality evolution across China\",\"authors\":\"Qing Zhou, Jiangjiang Zhang, Shuyou Zhang, Qiang Chen, Huifeng Fan, Chenglong Cao, Yanni Zhang, Yadi Yang, Jian Luo, Yijun Yao\",\"doi\":\"10.1038/s41467-025-57853-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>China is facing a severe groundwater quality crisis amid economic development and climate change, yet the extent and trajectory of this crisis remain largely unknown. Here we developed a machine-learning model, incorporating natural and social-economic factors, to construct annual probabilistic maps of poor groundwater quality (PGQ, i.e., Class V based on the Chinese groundwater quality standard) across China from 1980 to 2100. Alarmingly, our findings indicate a concerning escalation in PGQ area ratio, rising from 17.3% in 1980 to 30.1% in 2000, and surging to 40.8% by 2020, adversely affecting 6.8%, 17.5%, and 36.0% of the Chinese population, respectively. The predominant drivers of this degradation were identified as agricultural discharge (contributing to 10.7% growth in PGQ area ratio), followed by groundwater exploitation (5.6%), industrial discharge (5.3%), domestic discharge (1.7%), climate change (0.5%), and land use change (-0.3%). By 2050, the PGQ area ratio could range from 37.9% to 48.3% under different socio-economic and climate scenarios. Our study highlights the urgent need for effective water resources management and conservation measures to mitigate the deteriorating trend of groundwater quality and address the challenges posed by socio-economic development and climate change, thereby safeguarding water security for China and the global community.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57853-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57853-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在经济发展和气候变化的背景下,中国正面临着严重的地下水质量危机,但这场危机的程度和发展轨迹在很大程度上仍是未知的。在这里,我们开发了一个机器学习模型,结合自然和社会经济因素,构建了1980年至2100年中国地下水质量差(PGQ,即基于中国地下水质量标准的V类)的年度概率图。令人担忧的是,我们的研究结果表明,PGQ面积比的上升趋势令人担忧,从1980年的17.3%上升到2000年的30.1%,到2020年飙升至40.8%,分别对6.8%、17.5%和36.0%的中国人口产生不利影响。主要驱动因素为农业排放(对PGQ面积比增长贡献10.7%),其次为地下水开采(5.6%)、工业排放(5.3%)、生活排放(1.7%)、气候变化(0.5%)和土地利用变化(-0.3%)。到2050年,在不同的社会经济和气候情景下,PGQ面积比可能在37.9%至48.3%之间。我们的研究强调,迫切需要采取有效的水资源管理和保护措施,以缓解地下水质量恶化的趋势,应对社会经济发展和气候变化带来的挑战,从而维护中国和全球社会的水安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Groundwater quality evolution across China

Groundwater quality evolution across China

China is facing a severe groundwater quality crisis amid economic development and climate change, yet the extent and trajectory of this crisis remain largely unknown. Here we developed a machine-learning model, incorporating natural and social-economic factors, to construct annual probabilistic maps of poor groundwater quality (PGQ, i.e., Class V based on the Chinese groundwater quality standard) across China from 1980 to 2100. Alarmingly, our findings indicate a concerning escalation in PGQ area ratio, rising from 17.3% in 1980 to 30.1% in 2000, and surging to 40.8% by 2020, adversely affecting 6.8%, 17.5%, and 36.0% of the Chinese population, respectively. The predominant drivers of this degradation were identified as agricultural discharge (contributing to 10.7% growth in PGQ area ratio), followed by groundwater exploitation (5.6%), industrial discharge (5.3%), domestic discharge (1.7%), climate change (0.5%), and land use change (-0.3%). By 2050, the PGQ area ratio could range from 37.9% to 48.3% under different socio-economic and climate scenarios. Our study highlights the urgent need for effective water resources management and conservation measures to mitigate the deteriorating trend of groundwater quality and address the challenges posed by socio-economic development and climate change, thereby safeguarding water security for China and the global community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信