{"title":"星间光链路(OISL)信道建模与速率分析","authors":"Bodong Shang;Shuo Zhang;Zi Jing Wong","doi":"10.1109/TVT.2025.3549724","DOIUrl":null,"url":null,"abstract":"Optical inter-satellite links (OISLs) improve connectivity between satellites in space. They offer advantages such as high-throughput data transfer and reduced size, weight, and power requirements compared to traditional radio frequency transmission. However, the channel model and communication performance for long-distance inter-satellite laser transmission still require in-depth study. In this paper, we first develop a channel model for OISL communication within non-terrestrial networks (NTN) by accounting for pointing errors caused by satellite jitter and tracking noise. We derive the distributions of the channel state arising from these pointing errors and calculate their average value. Additionally, we determine the average achievable data rate for OISL communication in NTN and design a cooperative OISL system, highlighting a trade-off between concentrating beam energy and balancing misalignment. We calculate the minimum number of satellites required in cooperative OISLs to achieve a targeted data transmission size while adhering to latency constraints. This involves exploring the balance between the increased data rate of each link and the cumulative latency across all links. Finally, simulation results validate the effectiveness of the proposed analytical model and provide insights into the optimal number of satellites needed for cooperative OISLs and the optimal laser frequency to use.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 7","pages":"11650-11655"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Modeling and Rate Analysis of Optical Inter-Satellite Link (OISL)\",\"authors\":\"Bodong Shang;Shuo Zhang;Zi Jing Wong\",\"doi\":\"10.1109/TVT.2025.3549724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical inter-satellite links (OISLs) improve connectivity between satellites in space. They offer advantages such as high-throughput data transfer and reduced size, weight, and power requirements compared to traditional radio frequency transmission. However, the channel model and communication performance for long-distance inter-satellite laser transmission still require in-depth study. In this paper, we first develop a channel model for OISL communication within non-terrestrial networks (NTN) by accounting for pointing errors caused by satellite jitter and tracking noise. We derive the distributions of the channel state arising from these pointing errors and calculate their average value. Additionally, we determine the average achievable data rate for OISL communication in NTN and design a cooperative OISL system, highlighting a trade-off between concentrating beam energy and balancing misalignment. We calculate the minimum number of satellites required in cooperative OISLs to achieve a targeted data transmission size while adhering to latency constraints. This involves exploring the balance between the increased data rate of each link and the cumulative latency across all links. Finally, simulation results validate the effectiveness of the proposed analytical model and provide insights into the optimal number of satellites needed for cooperative OISLs and the optimal laser frequency to use.\",\"PeriodicalId\":13421,\"journal\":{\"name\":\"IEEE Transactions on Vehicular Technology\",\"volume\":\"74 7\",\"pages\":\"11650-11655\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Vehicular Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10924779/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10924779/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Channel Modeling and Rate Analysis of Optical Inter-Satellite Link (OISL)
Optical inter-satellite links (OISLs) improve connectivity between satellites in space. They offer advantages such as high-throughput data transfer and reduced size, weight, and power requirements compared to traditional radio frequency transmission. However, the channel model and communication performance for long-distance inter-satellite laser transmission still require in-depth study. In this paper, we first develop a channel model for OISL communication within non-terrestrial networks (NTN) by accounting for pointing errors caused by satellite jitter and tracking noise. We derive the distributions of the channel state arising from these pointing errors and calculate their average value. Additionally, we determine the average achievable data rate for OISL communication in NTN and design a cooperative OISL system, highlighting a trade-off between concentrating beam energy and balancing misalignment. We calculate the minimum number of satellites required in cooperative OISLs to achieve a targeted data transmission size while adhering to latency constraints. This involves exploring the balance between the increased data rate of each link and the cumulative latency across all links. Finally, simulation results validate the effectiveness of the proposed analytical model and provide insights into the optimal number of satellites needed for cooperative OISLs and the optimal laser frequency to use.
期刊介绍:
The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.