复杂手工密集型制造过程的数据驱动人机工程学风险评估。

Anand Krishnan, Xingjian Yang, Utsav Seth, Jonathan M Jeyachandran, Jonathan Y Ahn, Richard Gardner, Samuel F Pedigo, Adriana W Blom-Schieber, Ashis G Banerjee, Krithika Manohar
{"title":"复杂手工密集型制造过程的数据驱动人机工程学风险评估。","authors":"Anand Krishnan, Xingjian Yang, Utsav Seth, Jonathan M Jeyachandran, Jonathan Y Ahn, Richard Gardner, Samuel F Pedigo, Adriana W Blom-Schieber, Ashis G Banerjee, Krithika Manohar","doi":"10.1038/s44172-025-00382-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hand-intensive manufacturing processes, such as composite layup and textile draping, require significant human dexterity to accommodate task complexity. These strenuous hand motions often lead to musculoskeletal disorders and rehabilitation surgeries. Here we develop a data-driven ergonomic risk assessment system focused on hand and finger activity to better identify and address these risks in manufacturing. This system integrates a multi-modal sensor testbed that captures operator upper body pose, hand pose, and applied force data during hand-intensive composite layup tasks. We introduce the Biometric Assessment of Complete Hand (BACH) ergonomic score, which measures hand and finger risks with greater granularity than existing risk scores for upper body posture (Rapid Upper Limb Assessment, or RULA) and hand activity level (HAL). Additionally, we train machine learning models that effectively predict RULA and HAL metrics for new participants, using data collected at the University of Washington in 2023. Our assessment system, therefore, provides ergonomic interpretability of manufacturing processes, enabling targeted workplace optimizations and posture corrections to improve safety.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"45"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903948/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data-driven ergonomic risk assessment of complex hand-intensive manufacturing processes.\",\"authors\":\"Anand Krishnan, Xingjian Yang, Utsav Seth, Jonathan M Jeyachandran, Jonathan Y Ahn, Richard Gardner, Samuel F Pedigo, Adriana W Blom-Schieber, Ashis G Banerjee, Krithika Manohar\",\"doi\":\"10.1038/s44172-025-00382-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hand-intensive manufacturing processes, such as composite layup and textile draping, require significant human dexterity to accommodate task complexity. These strenuous hand motions often lead to musculoskeletal disorders and rehabilitation surgeries. Here we develop a data-driven ergonomic risk assessment system focused on hand and finger activity to better identify and address these risks in manufacturing. This system integrates a multi-modal sensor testbed that captures operator upper body pose, hand pose, and applied force data during hand-intensive composite layup tasks. We introduce the Biometric Assessment of Complete Hand (BACH) ergonomic score, which measures hand and finger risks with greater granularity than existing risk scores for upper body posture (Rapid Upper Limb Assessment, or RULA) and hand activity level (HAL). Additionally, we train machine learning models that effectively predict RULA and HAL metrics for new participants, using data collected at the University of Washington in 2023. Our assessment system, therefore, provides ergonomic interpretability of manufacturing processes, enabling targeted workplace optimizations and posture corrections to improve safety.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903948/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00382-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00382-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手工密集型的制造过程,如复合材料铺层和纺织品悬垂,需要显著的人类灵巧性来适应任务的复杂性。这些剧烈的手部运动经常导致肌肉骨骼疾病和康复手术。在这里,我们开发了一个数据驱动的人体工程学风险评估系统,专注于手和手指的活动,以更好地识别和解决制造中的这些风险。该系统集成了一个多模态传感器测试平台,可以捕获操作员上半身姿势、手部姿势,以及在手部密集的复合堆叠任务中施加的力数据。我们引入了全手生物特征评估(BACH)人体工程学评分,它比现有的上肢姿势(快速上肢评估,或RULA)和手部活动水平(HAL)的风险评分更精细地测量手和手指的风险。此外,我们训练机器学习模型,使用2023年在华盛顿大学收集的数据,有效地预测新参与者的RULA和HAL指标。因此,我们的评估系统为制造过程提供了符合人体工程学的可解释性,从而实现了有针对性的工作场所优化和姿势纠正,以提高安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven ergonomic risk assessment of complex hand-intensive manufacturing processes.

Hand-intensive manufacturing processes, such as composite layup and textile draping, require significant human dexterity to accommodate task complexity. These strenuous hand motions often lead to musculoskeletal disorders and rehabilitation surgeries. Here we develop a data-driven ergonomic risk assessment system focused on hand and finger activity to better identify and address these risks in manufacturing. This system integrates a multi-modal sensor testbed that captures operator upper body pose, hand pose, and applied force data during hand-intensive composite layup tasks. We introduce the Biometric Assessment of Complete Hand (BACH) ergonomic score, which measures hand and finger risks with greater granularity than existing risk scores for upper body posture (Rapid Upper Limb Assessment, or RULA) and hand activity level (HAL). Additionally, we train machine learning models that effectively predict RULA and HAL metrics for new participants, using data collected at the University of Washington in 2023. Our assessment system, therefore, provides ergonomic interpretability of manufacturing processes, enabling targeted workplace optimizations and posture corrections to improve safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信