{"title":"有限资源下交通出行与疾病传播的协同进化模型。","authors":"Zhanhao Liang, Kadyrkulova Kyial Kudayberdievna, Guijun Wu, Zhantu Liang, Batyrkanov Jenish Isakunovich, Wei Xiong, Wei Meng, Yukai Li","doi":"10.1038/s41598-025-93433-3","DOIUrl":null,"url":null,"abstract":"<p><p>The co-evolution mechanisms between traffic mobility and disease transmission under resource constraints remain poorly understood. This study proposes a two-layer transportation network model integrating the Susceptible-Infectious-Susceptible (SIS) epidemic framework to address this gap. The model incorporates critical factors such as total medical resources, inter-network infection delays, travel willingness, and network topology. Through simulations, we demonstrate that increasing medical resources significantly reduces infection scale during outbreaks, while prolonging inter-network delays slows transmission rates but extends epidemic persistence. Complex network topologies amplify the impact of travel behavior on disease spread, and multi-factor interventions (e.g., combined resource allocation and delay extension) outperform single-factor controls in suppressing transmission. Furthermore, reducing network connectivity (lower average degree) proves effective in mitigating outbreaks, especially under low travel willingness. These findings highlight the necessity of coordinated policies that leverage resource optimization, travel regulation, and network simplification to manage epidemics. This work provides actionable insights for policymakers to design efficient epidemic control strategies in transportation-dependent societies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8536"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904198/pdf/","citationCount":"0","resultStr":"{\"title\":\"Co-evolution model of traffic travel and disease transmission under limited resources.\",\"authors\":\"Zhanhao Liang, Kadyrkulova Kyial Kudayberdievna, Guijun Wu, Zhantu Liang, Batyrkanov Jenish Isakunovich, Wei Xiong, Wei Meng, Yukai Li\",\"doi\":\"10.1038/s41598-025-93433-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The co-evolution mechanisms between traffic mobility and disease transmission under resource constraints remain poorly understood. This study proposes a two-layer transportation network model integrating the Susceptible-Infectious-Susceptible (SIS) epidemic framework to address this gap. The model incorporates critical factors such as total medical resources, inter-network infection delays, travel willingness, and network topology. Through simulations, we demonstrate that increasing medical resources significantly reduces infection scale during outbreaks, while prolonging inter-network delays slows transmission rates but extends epidemic persistence. Complex network topologies amplify the impact of travel behavior on disease spread, and multi-factor interventions (e.g., combined resource allocation and delay extension) outperform single-factor controls in suppressing transmission. Furthermore, reducing network connectivity (lower average degree) proves effective in mitigating outbreaks, especially under low travel willingness. These findings highlight the necessity of coordinated policies that leverage resource optimization, travel regulation, and network simplification to manage epidemics. This work provides actionable insights for policymakers to design efficient epidemic control strategies in transportation-dependent societies.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8536\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904198/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93433-3\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93433-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Co-evolution model of traffic travel and disease transmission under limited resources.
The co-evolution mechanisms between traffic mobility and disease transmission under resource constraints remain poorly understood. This study proposes a two-layer transportation network model integrating the Susceptible-Infectious-Susceptible (SIS) epidemic framework to address this gap. The model incorporates critical factors such as total medical resources, inter-network infection delays, travel willingness, and network topology. Through simulations, we demonstrate that increasing medical resources significantly reduces infection scale during outbreaks, while prolonging inter-network delays slows transmission rates but extends epidemic persistence. Complex network topologies amplify the impact of travel behavior on disease spread, and multi-factor interventions (e.g., combined resource allocation and delay extension) outperform single-factor controls in suppressing transmission. Furthermore, reducing network connectivity (lower average degree) proves effective in mitigating outbreaks, especially under low travel willingness. These findings highlight the necessity of coordinated policies that leverage resource optimization, travel regulation, and network simplification to manage epidemics. This work provides actionable insights for policymakers to design efficient epidemic control strategies in transportation-dependent societies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.