饥饿诱导的HBP代谢重编程和STAM2 o - glcn酰化促进膀胱癌转移。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhenwei Feng, Yuhua Mei, Haonan Chen, Li Li, Tian Jin, Xinyuan Li, Xin Gou, Yong Chen
{"title":"饥饿诱导的HBP代谢重编程和STAM2 o - glcn酰化促进膀胱癌转移。","authors":"Zhenwei Feng, Yuhua Mei, Haonan Chen, Li Li, Tian Jin, Xinyuan Li, Xin Gou, Yong Chen","doi":"10.1038/s41598-025-92579-4","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic reprogramming and epigenetic alternations are implicated in tumor progression and metastasis, but the metabolic and epigenetic mechanisms underlying lymphatic and distant metastasis of bladder cancer (BCa) remain poorly understood. In this study, we provide the first evidence that glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1), the crucial rate-limiting switch of the hexosamine biosynthesis pathway (HBP), is considerably upregulated in the nutrient-scarce microenvironment and causes a high O-GlcNAcylation of signal transducing adaptor molecule 2 (STAM2), further facilitating lymphatic and distant metastasis of BCa. Inhibition of GFAT1 and O-GlcNAcylation impairs STAM2-induced metastasis. Mechanistically, O-GlcNAcylation of STAM2 at serine 375 augments protein stability by inhibiting proteasome degradation and ubiquitination. In addition, STAM2 O-GlcNAcylation facilitates Janus kinase 2 (JAK2) and signal transducer and activator of transcription (STAT3) phosphorylation, thus activating the epithelial‒mesenchymal transition. In summary, these results reveal a novel metabolic and epigenetic link mediating tumor metastasis, and indicate that targeting GFAT1 and STAM2 O-GlcNAcylation may serve as a promising treatment strategy for BCa progression.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8480"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Starvation-induced HBP metabolic reprogramming and STAM2 O-GlcNAcylation facilitate bladder cancer metastasis.\",\"authors\":\"Zhenwei Feng, Yuhua Mei, Haonan Chen, Li Li, Tian Jin, Xinyuan Li, Xin Gou, Yong Chen\",\"doi\":\"10.1038/s41598-025-92579-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic reprogramming and epigenetic alternations are implicated in tumor progression and metastasis, but the metabolic and epigenetic mechanisms underlying lymphatic and distant metastasis of bladder cancer (BCa) remain poorly understood. In this study, we provide the first evidence that glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1), the crucial rate-limiting switch of the hexosamine biosynthesis pathway (HBP), is considerably upregulated in the nutrient-scarce microenvironment and causes a high O-GlcNAcylation of signal transducing adaptor molecule 2 (STAM2), further facilitating lymphatic and distant metastasis of BCa. Inhibition of GFAT1 and O-GlcNAcylation impairs STAM2-induced metastasis. Mechanistically, O-GlcNAcylation of STAM2 at serine 375 augments protein stability by inhibiting proteasome degradation and ubiquitination. In addition, STAM2 O-GlcNAcylation facilitates Janus kinase 2 (JAK2) and signal transducer and activator of transcription (STAT3) phosphorylation, thus activating the epithelial‒mesenchymal transition. In summary, these results reveal a novel metabolic and epigenetic link mediating tumor metastasis, and indicate that targeting GFAT1 and STAM2 O-GlcNAcylation may serve as a promising treatment strategy for BCa progression.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8480\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-92579-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92579-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

代谢重编程和表观遗传改变与肿瘤进展和转移有关,但膀胱癌(BCa)淋巴转移和远处转移的代谢和表观遗传机制尚不清楚。在这项研究中,我们提供了第一个证据,证明谷氨酰胺-果糖-6-磷酸转氨酶1 (GFAT1)是己糖胺生物合成途径(HBP)的关键限速开关,在营养匮乏的微环境中显著上调,并导致信号转导受体分子2 (STAM2)的高o - glcn酰化,进一步促进BCa的淋巴和远处转移。抑制GFAT1和o - glcn酰化会损害stam2诱导的转移。机制上,STAM2丝氨酸375处的o - glcn酰化通过抑制蛋白酶体降解和泛素化来增强蛋白质的稳定性。此外,STAM2 o - glcnac酰化促进了Janus kinase 2 (JAK2)和转录信号换能器和激活因子(STAT3)的磷酸化,从而激活了上皮-间质转化。总之,这些结果揭示了介导肿瘤转移的一种新的代谢和表观遗传联系,并表明靶向GFAT1和STAM2 o - glcn酰化可能是一种有希望的治疗BCa进展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Starvation-induced HBP metabolic reprogramming and STAM2 O-GlcNAcylation facilitate bladder cancer metastasis.

Metabolic reprogramming and epigenetic alternations are implicated in tumor progression and metastasis, but the metabolic and epigenetic mechanisms underlying lymphatic and distant metastasis of bladder cancer (BCa) remain poorly understood. In this study, we provide the first evidence that glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1), the crucial rate-limiting switch of the hexosamine biosynthesis pathway (HBP), is considerably upregulated in the nutrient-scarce microenvironment and causes a high O-GlcNAcylation of signal transducing adaptor molecule 2 (STAM2), further facilitating lymphatic and distant metastasis of BCa. Inhibition of GFAT1 and O-GlcNAcylation impairs STAM2-induced metastasis. Mechanistically, O-GlcNAcylation of STAM2 at serine 375 augments protein stability by inhibiting proteasome degradation and ubiquitination. In addition, STAM2 O-GlcNAcylation facilitates Janus kinase 2 (JAK2) and signal transducer and activator of transcription (STAT3) phosphorylation, thus activating the epithelial‒mesenchymal transition. In summary, these results reveal a novel metabolic and epigenetic link mediating tumor metastasis, and indicate that targeting GFAT1 and STAM2 O-GlcNAcylation may serve as a promising treatment strategy for BCa progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信