在面包活性包装中利用精油成分作为天然抗真菌防腐剂的研究。

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-03-06 DOI:10.3390/polym17050697
Konstantinos Safakas, Georgia C Lainioti, George Tsiamis, Panagiota Stathopoulou, Athanasios Ladavos
{"title":"在面包活性包装中利用精油成分作为天然抗真菌防腐剂的研究。","authors":"Konstantinos Safakas, Georgia C Lainioti, George Tsiamis, Panagiota Stathopoulou, Athanasios Ladavos","doi":"10.3390/polym17050697","DOIUrl":null,"url":null,"abstract":"<p><p>The use of essential oil components as natural antifungal preservatives in the active packaging of bread is an innovative approach that leverages the antimicrobial properties of these compounds to extend the shelf life of bread and ensure its safety. The aim of the present work was the thorough investigation of the antioxidant properties and antifungal activity of low-density polyethylene (LDPE or PE) nanocomposite films with organically modified montmorillonite (O) loaded with carvacrol (C) or thymol (T) as a function of time, starting from 2 months and concluding at 12 months. The films PE_OC and PE_OT were prepared through the evaporation/adsorption method, a green methodology developed by our group compatible with food packaging. For a comprehensive analysis of the synthesized films' oxygen permeability (OTR), measurements were employed, indicating that the incorporation of clay-bioactive nanocarriers into LDPE films reduced their oxygen permeability. A thorough analysis in terms of the antioxidant activity of the films was assessed at various intervals (2, 3, 6, and 12 months), showing high antioxidant activity for films PE_OC10 and PE_OT10 (polyethylene with 10% wt. organically modified montmorillonite loaded with carvacrol or thymol), even at 12 months. Based on the overall analysis, the PE_OC10 film was identified as the most effective option in the antifungal evaluation conducted using white bread, demonstrating substantial inhibition of fungal growth for up to six months.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902473/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing Essential Oil Components as Natural Antifungal Preservatives in the Active Packaging of Bread.\",\"authors\":\"Konstantinos Safakas, Georgia C Lainioti, George Tsiamis, Panagiota Stathopoulou, Athanasios Ladavos\",\"doi\":\"10.3390/polym17050697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of essential oil components as natural antifungal preservatives in the active packaging of bread is an innovative approach that leverages the antimicrobial properties of these compounds to extend the shelf life of bread and ensure its safety. The aim of the present work was the thorough investigation of the antioxidant properties and antifungal activity of low-density polyethylene (LDPE or PE) nanocomposite films with organically modified montmorillonite (O) loaded with carvacrol (C) or thymol (T) as a function of time, starting from 2 months and concluding at 12 months. The films PE_OC and PE_OT were prepared through the evaporation/adsorption method, a green methodology developed by our group compatible with food packaging. For a comprehensive analysis of the synthesized films' oxygen permeability (OTR), measurements were employed, indicating that the incorporation of clay-bioactive nanocarriers into LDPE films reduced their oxygen permeability. A thorough analysis in terms of the antioxidant activity of the films was assessed at various intervals (2, 3, 6, and 12 months), showing high antioxidant activity for films PE_OC10 and PE_OT10 (polyethylene with 10% wt. organically modified montmorillonite loaded with carvacrol or thymol), even at 12 months. Based on the overall analysis, the PE_OC10 film was identified as the most effective option in the antifungal evaluation conducted using white bread, demonstrating substantial inhibition of fungal growth for up to six months.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902473/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17050697\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17050697","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在面包的活性包装中使用精油成分作为天然抗真菌防腐剂是一种创新的方法,它利用这些化合物的抗菌特性来延长面包的保质期并确保其安全性。本研究的目的是深入研究低密度聚乙烯(LDPE或PE)纳米复合膜的抗氧化性能和抗真菌活性,有机改性蒙脱土(O)负载香芹酚(C)或百里香酚(T)作为时间的函数,从2个月开始到12个月结束。采用本课组开发的与食品包装相适应的绿色蒸发吸附法制备PE_OC和PE_OT薄膜。为了全面分析合成膜的氧透性(OTR),采用了测量方法,表明将粘土生物活性纳米载体掺入LDPE膜降低了其氧透性。在不同的时间间隔(2、3、6和12个月)对薄膜的抗氧化活性进行了全面的分析,显示PE_OC10和PE_OT10薄膜(聚乙烯与10%重量的有机改性蒙脱土负载有香豆酚或百里香酚)即使在12个月时也具有较高的抗氧化活性。基于整体分析,PE_OC10膜被确定为白面包抗真菌评价中最有效的选择,显示出长达6个月的真菌生长抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Essential Oil Components as Natural Antifungal Preservatives in the Active Packaging of Bread.

The use of essential oil components as natural antifungal preservatives in the active packaging of bread is an innovative approach that leverages the antimicrobial properties of these compounds to extend the shelf life of bread and ensure its safety. The aim of the present work was the thorough investigation of the antioxidant properties and antifungal activity of low-density polyethylene (LDPE or PE) nanocomposite films with organically modified montmorillonite (O) loaded with carvacrol (C) or thymol (T) as a function of time, starting from 2 months and concluding at 12 months. The films PE_OC and PE_OT were prepared through the evaporation/adsorption method, a green methodology developed by our group compatible with food packaging. For a comprehensive analysis of the synthesized films' oxygen permeability (OTR), measurements were employed, indicating that the incorporation of clay-bioactive nanocarriers into LDPE films reduced their oxygen permeability. A thorough analysis in terms of the antioxidant activity of the films was assessed at various intervals (2, 3, 6, and 12 months), showing high antioxidant activity for films PE_OC10 and PE_OT10 (polyethylene with 10% wt. organically modified montmorillonite loaded with carvacrol or thymol), even at 12 months. Based on the overall analysis, the PE_OC10 film was identified as the most effective option in the antifungal evaluation conducted using white bread, demonstrating substantial inhibition of fungal growth for up to six months.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信