Sevil V Afshar, Alessio Boldrin, Thomas H Christensen, Fabiana Corami, Anders E Daugaard, Beatrice Rosso, Nanna B Hartmann
{"title":"商业生物降解塑料产品在模拟工业堆肥条件下的分解。","authors":"Sevil V Afshar, Alessio Boldrin, Thomas H Christensen, Fabiana Corami, Anders E Daugaard, Beatrice Rosso, Nanna B Hartmann","doi":"10.1038/s41598-025-91647-z","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable plastics are often promoted as sustainable alternatives to conventional plastics. Nevertheless, significant knowledge gaps exist regarding their degradation under relevant conditions, particularly when compounded into commercial products. To this end, the present research investigates the disintegration of ten commercially available biodegradable plastic products under simulated industrial composting conditions. The tested products included polymer compositions of either polylactic acid (PLA), polybutylene adipate terephthalate (PBAT)/starch, or polyhydroxyalkanoate (PHA), covering both flexible and rigid plastics. These products comprised three waste bags, one waste bag drawstring, one food bag (flexible plastics), two flower pots, one food container, one plate, and one lid (rigid plastics). Among the tested products, nine were marketed as compostable. Of these, six were certified under the European standard EN 13432 for compostable packaging, two held TÜV Austria's \"OK compost home\" certification, and one was labeled as compostable but lacked certification. Additionally, one product was labeled as 100% biodegradable but lacked certification, and the environment in which the product could biodegrade was not specified. Disintegration was determined according to ISO 20200 in laboratory scale tests conducted at 58 °C with 55% moisture content over 90 days. Results showed disintegration degrees ranging from 75 to 100%, with five products achieving complete disintegration. Two products, however, reached only 75% disintegration. Following the disintegration test, compost particles smaller than 2 mm were examined for microplastics (MPs) via light microscopy. MPs were detected in compost undersieves for two of the ten biodegradable plastic products, while no MPs were detected for the conventional plastics. Notably, the visual inspection was performed without pretreating the compost matrix due to the observed degradation of biodegradable plastics when using chemicals for oxidative digestion. Considering the limitations of visual MP observation without pretreatment, future research should prioritize the development of methods for extracting biodegradable MPs from complex matrices like compost. Enhanced extraction methods are essential for understanding compost's potential role as a source of MPs in the environment.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8569"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904191/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disintegration of commercial biodegradable plastic products under simulated industrial composting conditions.\",\"authors\":\"Sevil V Afshar, Alessio Boldrin, Thomas H Christensen, Fabiana Corami, Anders E Daugaard, Beatrice Rosso, Nanna B Hartmann\",\"doi\":\"10.1038/s41598-025-91647-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biodegradable plastics are often promoted as sustainable alternatives to conventional plastics. Nevertheless, significant knowledge gaps exist regarding their degradation under relevant conditions, particularly when compounded into commercial products. To this end, the present research investigates the disintegration of ten commercially available biodegradable plastic products under simulated industrial composting conditions. The tested products included polymer compositions of either polylactic acid (PLA), polybutylene adipate terephthalate (PBAT)/starch, or polyhydroxyalkanoate (PHA), covering both flexible and rigid plastics. These products comprised three waste bags, one waste bag drawstring, one food bag (flexible plastics), two flower pots, one food container, one plate, and one lid (rigid plastics). Among the tested products, nine were marketed as compostable. Of these, six were certified under the European standard EN 13432 for compostable packaging, two held TÜV Austria's \\\"OK compost home\\\" certification, and one was labeled as compostable but lacked certification. Additionally, one product was labeled as 100% biodegradable but lacked certification, and the environment in which the product could biodegrade was not specified. Disintegration was determined according to ISO 20200 in laboratory scale tests conducted at 58 °C with 55% moisture content over 90 days. Results showed disintegration degrees ranging from 75 to 100%, with five products achieving complete disintegration. Two products, however, reached only 75% disintegration. Following the disintegration test, compost particles smaller than 2 mm were examined for microplastics (MPs) via light microscopy. MPs were detected in compost undersieves for two of the ten biodegradable plastic products, while no MPs were detected for the conventional plastics. Notably, the visual inspection was performed without pretreating the compost matrix due to the observed degradation of biodegradable plastics when using chemicals for oxidative digestion. Considering the limitations of visual MP observation without pretreatment, future research should prioritize the development of methods for extracting biodegradable MPs from complex matrices like compost. Enhanced extraction methods are essential for understanding compost's potential role as a source of MPs in the environment.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"8569\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904191/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91647-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91647-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Disintegration of commercial biodegradable plastic products under simulated industrial composting conditions.
Biodegradable plastics are often promoted as sustainable alternatives to conventional plastics. Nevertheless, significant knowledge gaps exist regarding their degradation under relevant conditions, particularly when compounded into commercial products. To this end, the present research investigates the disintegration of ten commercially available biodegradable plastic products under simulated industrial composting conditions. The tested products included polymer compositions of either polylactic acid (PLA), polybutylene adipate terephthalate (PBAT)/starch, or polyhydroxyalkanoate (PHA), covering both flexible and rigid plastics. These products comprised three waste bags, one waste bag drawstring, one food bag (flexible plastics), two flower pots, one food container, one plate, and one lid (rigid plastics). Among the tested products, nine were marketed as compostable. Of these, six were certified under the European standard EN 13432 for compostable packaging, two held TÜV Austria's "OK compost home" certification, and one was labeled as compostable but lacked certification. Additionally, one product was labeled as 100% biodegradable but lacked certification, and the environment in which the product could biodegrade was not specified. Disintegration was determined according to ISO 20200 in laboratory scale tests conducted at 58 °C with 55% moisture content over 90 days. Results showed disintegration degrees ranging from 75 to 100%, with five products achieving complete disintegration. Two products, however, reached only 75% disintegration. Following the disintegration test, compost particles smaller than 2 mm were examined for microplastics (MPs) via light microscopy. MPs were detected in compost undersieves for two of the ten biodegradable plastic products, while no MPs were detected for the conventional plastics. Notably, the visual inspection was performed without pretreating the compost matrix due to the observed degradation of biodegradable plastics when using chemicals for oxidative digestion. Considering the limitations of visual MP observation without pretreatment, future research should prioritize the development of methods for extracting biodegradable MPs from complex matrices like compost. Enhanced extraction methods are essential for understanding compost's potential role as a source of MPs in the environment.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.