{"title":"用反义寡核苷酸靶向MALT1的死亡和副半乳糖酶结构域克服了对免疫检查点抑制剂的抗性。","authors":"Yuwei Tao, Chen Tian, Shaolong Qi, Ziqi Jia, Zheng Xu, Jingjing Meng, Guoyuan Xu, Haitian Hu, Xuxiang Wang, Tengjiang Zhang, Huiwen You, Xun Lan, Xin Lin, Guocan Yu, Haitao Zhou, Jiaqi Liu, Hanqiu Zheng","doi":"10.1038/s43018-025-00930-5","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting MALT1's paracaspase activity has been explored for B cell lymphoma and solid tumors. While the role of MALT1 in promoting cancer cell proliferation has been investigated, its involvement in immune evasion is unclear. Here we report that MALT1 promotes immune evasion through its paracaspase and death domain. In a paracaspase-dependent manner, MALT1 protects CD274 mRNA from degradation by its cleavage of ROQUIN1 and ROQUIN2. In a death-domain-dependent manner, MALT1 promotes the proliferation and polarization of tumor-associated macrophages to generate an immunosuppressive tumor microenvironment. Targeting MALT1 with antisense oligonucleotides inhibits PD-L1 expression in patient-derived tumor cells and suppresses the proliferation and M2-like polarization of tumor-associated macrophages isolated from patients with cancer. In preclinical models of solid tumors in female mice, treatment with MALT1 antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors. Together, our study demonstrates that targeting MALT1 is a potential strategy to overcome immune-checkpoint inhibitor resistance.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":"702-717"},"PeriodicalIF":23.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting both death and paracaspase domains of MALT1 with antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors.\",\"authors\":\"Yuwei Tao, Chen Tian, Shaolong Qi, Ziqi Jia, Zheng Xu, Jingjing Meng, Guoyuan Xu, Haitian Hu, Xuxiang Wang, Tengjiang Zhang, Huiwen You, Xun Lan, Xin Lin, Guocan Yu, Haitao Zhou, Jiaqi Liu, Hanqiu Zheng\",\"doi\":\"10.1038/s43018-025-00930-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeting MALT1's paracaspase activity has been explored for B cell lymphoma and solid tumors. While the role of MALT1 in promoting cancer cell proliferation has been investigated, its involvement in immune evasion is unclear. Here we report that MALT1 promotes immune evasion through its paracaspase and death domain. In a paracaspase-dependent manner, MALT1 protects CD274 mRNA from degradation by its cleavage of ROQUIN1 and ROQUIN2. In a death-domain-dependent manner, MALT1 promotes the proliferation and polarization of tumor-associated macrophages to generate an immunosuppressive tumor microenvironment. Targeting MALT1 with antisense oligonucleotides inhibits PD-L1 expression in patient-derived tumor cells and suppresses the proliferation and M2-like polarization of tumor-associated macrophages isolated from patients with cancer. In preclinical models of solid tumors in female mice, treatment with MALT1 antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors. Together, our study demonstrates that targeting MALT1 is a potential strategy to overcome immune-checkpoint inhibitor resistance.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"702-717\"},\"PeriodicalIF\":23.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-025-00930-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00930-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting both death and paracaspase domains of MALT1 with antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors.
Targeting MALT1's paracaspase activity has been explored for B cell lymphoma and solid tumors. While the role of MALT1 in promoting cancer cell proliferation has been investigated, its involvement in immune evasion is unclear. Here we report that MALT1 promotes immune evasion through its paracaspase and death domain. In a paracaspase-dependent manner, MALT1 protects CD274 mRNA from degradation by its cleavage of ROQUIN1 and ROQUIN2. In a death-domain-dependent manner, MALT1 promotes the proliferation and polarization of tumor-associated macrophages to generate an immunosuppressive tumor microenvironment. Targeting MALT1 with antisense oligonucleotides inhibits PD-L1 expression in patient-derived tumor cells and suppresses the proliferation and M2-like polarization of tumor-associated macrophages isolated from patients with cancer. In preclinical models of solid tumors in female mice, treatment with MALT1 antisense oligonucleotides overcomes resistance to immune-checkpoint inhibitors. Together, our study demonstrates that targeting MALT1 is a potential strategy to overcome immune-checkpoint inhibitor resistance.
期刊介绍:
Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates.
Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale.
In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.