PKM2 knockout facilitates the activation of the AMPK/KLF4/ACADVL pathway, leading to increased oxidative degradation of fatty acids in TNBC.
This study unveils PKM2 as a master metabolic coordinator in triple-negative breast cancer (TNBC), governing the glycolysis-lipolysis balance through the AMPK/KLF4/ACADVL axis. We demonstrate stage-specific PKM2 upregulation in TNBC, with CRISPR/Cas9 knockout inducing dual metabolic reprogramming-suppressed glycolysis and activated lipid catabolism. Mechanistically, PKM2 ablation triggers AMPK-dependent nuclear translocation of KLF4, which directly activates ACADVL (mitochondrial β-oxidation rate-limiting enzyme), explaining lipid droplet depletion. Therapeutically, synergistic lethality emerges from combining PKM2 knockout with ACADVL inhibition, suggesting metabolic redundancy disruption strategies. Unlike PKM2-SCAP-mediated lipogenesis reported elsewhere, our work establishes a KLF4-driven lipid catabolic pathway specific to TNBC. Crucially, this AMPK/KLF4/ACADVL network operates independently of BRCA status, proposing targeted therapy for chemoresistant non-BRCA mutant TNBC. Our findings redefine TNBC metabolic plasticity through transcriptional-metabolic crosstalk, offering combinatorial therapeutic paradigms against metabolic adaptation.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.