Fei Guo, Renchu Guan, Yaohang Li, Qi Liu, Xiaowo Wang, Can Yang, Jianxin Wang
{"title":"生物信息学的基础模型。","authors":"Fei Guo, Renchu Guan, Yaohang Li, Qi Liu, Xiaowo Wang, Can Yang, Jianxin Wang","doi":"10.1093/nsr/nwaf028","DOIUrl":null,"url":null,"abstract":"<p><p>With the adoption of foundation models (FMs), artificial intelligence (AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges, such as pre-training frameworks, model evaluation and interpretability. FMs demonstrate notable proficiency in managing large-scale, unlabeled datasets, because experimental procedures are costly and labor intensive. In various downstream tasks, FMs have consistently achieved noteworthy results, demonstrating high levels of accuracy in representing biological entities. A new era in computational biology has been ushered in by the application of FMs, focusing on both general and specific biological issues. In this review, we introduce recent advancements in bioinformatics FMs employed in a variety of downstream tasks, including genomics, transcriptomics, proteomics, drug discovery and single-cell analysis. Our aim is to assist scientists in selecting appropriate FMs in bioinformatics, according to four model types: language FMs, vision FMs, graph FMs and multimodal FMs. In addition to understanding molecular landscapes, AI technology can establish the theoretical and practical foundation for continued innovation in molecular biology.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwaf028"},"PeriodicalIF":17.1000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900445/pdf/","citationCount":"0","resultStr":"{\"title\":\"Foundation models in bioinformatics.\",\"authors\":\"Fei Guo, Renchu Guan, Yaohang Li, Qi Liu, Xiaowo Wang, Can Yang, Jianxin Wang\",\"doi\":\"10.1093/nsr/nwaf028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the adoption of foundation models (FMs), artificial intelligence (AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges, such as pre-training frameworks, model evaluation and interpretability. FMs demonstrate notable proficiency in managing large-scale, unlabeled datasets, because experimental procedures are costly and labor intensive. In various downstream tasks, FMs have consistently achieved noteworthy results, demonstrating high levels of accuracy in representing biological entities. A new era in computational biology has been ushered in by the application of FMs, focusing on both general and specific biological issues. In this review, we introduce recent advancements in bioinformatics FMs employed in a variety of downstream tasks, including genomics, transcriptomics, proteomics, drug discovery and single-cell analysis. Our aim is to assist scientists in selecting appropriate FMs in bioinformatics, according to four model types: language FMs, vision FMs, graph FMs and multimodal FMs. In addition to understanding molecular landscapes, AI technology can establish the theoretical and practical foundation for continued innovation in molecular biology.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 4\",\"pages\":\"nwaf028\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900445/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf028\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf028","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
With the adoption of foundation models (FMs), artificial intelligence (AI) has become increasingly significant in bioinformatics and has successfully addressed many historical challenges, such as pre-training frameworks, model evaluation and interpretability. FMs demonstrate notable proficiency in managing large-scale, unlabeled datasets, because experimental procedures are costly and labor intensive. In various downstream tasks, FMs have consistently achieved noteworthy results, demonstrating high levels of accuracy in representing biological entities. A new era in computational biology has been ushered in by the application of FMs, focusing on both general and specific biological issues. In this review, we introduce recent advancements in bioinformatics FMs employed in a variety of downstream tasks, including genomics, transcriptomics, proteomics, drug discovery and single-cell analysis. Our aim is to assist scientists in selecting appropriate FMs in bioinformatics, according to four model types: language FMs, vision FMs, graph FMs and multimodal FMs. In addition to understanding molecular landscapes, AI technology can establish the theoretical and practical foundation for continued innovation in molecular biology.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.