EZH2协调记忆b细胞编程和回忆反应。

IF 3.6 3区 医学 Q2 IMMUNOLOGY
Keenan J Wiggins, Mark E Williams, Sakeenah L Hicks, Herbey O Padilla-Quirarte, Jobaida Akther, Troy D Randall, Jeremy M Boss, Christopher D Scharer
{"title":"EZH2协调记忆b细胞编程和回忆反应。","authors":"Keenan J Wiggins, Mark E Williams, Sakeenah L Hicks, Herbey O Padilla-Quirarte, Jobaida Akther, Troy D Randall, Jeremy M Boss, Christopher D Scharer","doi":"10.1093/jimmun/vkaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Antigen-experienced memory B-cells (MBC) are endowed with enhanced functional properties compared to naïve B cells and play an important role in the humoral response. However, the epigenetic enzymes and programs that govern their rapid differentiation are incompletely understood. Here, the role of the histone H3 lysine 27 methyltransferase EZH2 in the formation of MBC in response to an influenza infection was determined in Mus musculus. EZH2 was expressed in all postactivated B-cell subsets, including MBC and antibody-secreting cells (ASC), with maximal expression in germinal center (GC) B cells. Deletion of EZH2 resulted in a skewing of the MBC pool towards a non-GC, IgM+ MBC subset that failed to fully express CCR6 and CD73 at both early and late infection time points. Intriguingly, although EZH2 protein levels were reduced in knockout MBC, deletion was not fully efficient, indicating a strong selective pressure to maintain EZH2 methyltransferase activity. Single-cell RNA-seq of antigen-specific MBC identified a core set of upregulated genes that are likely EZH2 targets across MBC subsets. Finally, defects in the ability to form secondary ASC and GC cells in response to a lethal challenge were observed in EZH2-deficient mice, indicating significant functional impairment in the absence of EZH2. These data show that EZH2 is a critical epigenetic modulator of MBC differentiation and functional potential during reactivation.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EZH2 coordinates memory B-cell programming and recall responses.\",\"authors\":\"Keenan J Wiggins, Mark E Williams, Sakeenah L Hicks, Herbey O Padilla-Quirarte, Jobaida Akther, Troy D Randall, Jeremy M Boss, Christopher D Scharer\",\"doi\":\"10.1093/jimmun/vkaf004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antigen-experienced memory B-cells (MBC) are endowed with enhanced functional properties compared to naïve B cells and play an important role in the humoral response. However, the epigenetic enzymes and programs that govern their rapid differentiation are incompletely understood. Here, the role of the histone H3 lysine 27 methyltransferase EZH2 in the formation of MBC in response to an influenza infection was determined in Mus musculus. EZH2 was expressed in all postactivated B-cell subsets, including MBC and antibody-secreting cells (ASC), with maximal expression in germinal center (GC) B cells. Deletion of EZH2 resulted in a skewing of the MBC pool towards a non-GC, IgM+ MBC subset that failed to fully express CCR6 and CD73 at both early and late infection time points. Intriguingly, although EZH2 protein levels were reduced in knockout MBC, deletion was not fully efficient, indicating a strong selective pressure to maintain EZH2 methyltransferase activity. Single-cell RNA-seq of antigen-specific MBC identified a core set of upregulated genes that are likely EZH2 targets across MBC subsets. Finally, defects in the ability to form secondary ASC and GC cells in response to a lethal challenge were observed in EZH2-deficient mice, indicating significant functional impairment in the absence of EZH2. These data show that EZH2 is a critical epigenetic modulator of MBC differentiation and functional potential during reactivation.</p>\",\"PeriodicalId\":16045,\"journal\":{\"name\":\"Journal of immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jimmun/vkaf004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkaf004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与naïve B细胞相比,抗原经历记忆B细胞(MBC)具有更强的功能特性,在体液反应中起重要作用。然而,控制其快速分化的表观遗传酶和程序尚不完全清楚。在这里,组蛋白H3赖氨酸27甲基转移酶EZH2在小家鼠流感感染反应中形成MBC中的作用被确定。EZH2在所有活化后的B细胞亚群中均有表达,包括MBC和抗体分泌细胞(ASC),其中生发中心(GC) B细胞表达量最大。EZH2的缺失导致MBC池向非gc, IgM+ MBC亚群倾斜,在感染的早期和晚期都不能完全表达CCR6和CD73。有趣的是,尽管EZH2蛋白水平在敲除MBC中降低,但删除并不完全有效,这表明维持EZH2甲基转移酶活性有很强的选择压力。抗原特异性MBC的单细胞RNA-seq鉴定出一组核心上调基因,这些基因可能是MBC亚群中EZH2的靶点。最后,在缺乏EZH2的小鼠中观察到在致命攻击下形成继发性ASC和GC细胞的能力缺陷,表明在缺乏EZH2的情况下存在显著的功能损伤。这些数据表明EZH2是MBC分化和再激活过程中功能电位的关键表观遗传调节剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EZH2 coordinates memory B-cell programming and recall responses.

Antigen-experienced memory B-cells (MBC) are endowed with enhanced functional properties compared to naïve B cells and play an important role in the humoral response. However, the epigenetic enzymes and programs that govern their rapid differentiation are incompletely understood. Here, the role of the histone H3 lysine 27 methyltransferase EZH2 in the formation of MBC in response to an influenza infection was determined in Mus musculus. EZH2 was expressed in all postactivated B-cell subsets, including MBC and antibody-secreting cells (ASC), with maximal expression in germinal center (GC) B cells. Deletion of EZH2 resulted in a skewing of the MBC pool towards a non-GC, IgM+ MBC subset that failed to fully express CCR6 and CD73 at both early and late infection time points. Intriguingly, although EZH2 protein levels were reduced in knockout MBC, deletion was not fully efficient, indicating a strong selective pressure to maintain EZH2 methyltransferase activity. Single-cell RNA-seq of antigen-specific MBC identified a core set of upregulated genes that are likely EZH2 targets across MBC subsets. Finally, defects in the ability to form secondary ASC and GC cells in response to a lethal challenge were observed in EZH2-deficient mice, indicating significant functional impairment in the absence of EZH2. These data show that EZH2 is a critical epigenetic modulator of MBC differentiation and functional potential during reactivation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信